
Introduction to the CUDA
Programming Language

Copyright © 2011 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2011

Compute	
 Unified	
 Device	
 Architecture	

Execu6on	
 Model	
 Overview

• Architecture and programming model, introduced in NVIDIA in 2007.

• Enables GPUs to execute programs written in C in an integrated host (CPU) +
device (GPU) app C program.

• Serial or modestly parallel parts in host C code.

• Highly parallel parts in device SIMT codes kernel code.

• Differences between GPU and CPU threads:

• GPU threads are extremely lightweight with very little creation overhead.

• GPU needs 1000’s of threads for full efficiency (multi-core CPU needs only a
few).

Compute	
 Unified	
 Device	
 Architecture	

Execu6on	
 Model	
 Overview

C/CUDA	
 Code

//	
 serial	
 code
int main() {
 printf(“Hello world!”\n);

//	
 allocate	
 data
 cudaMalloc(...);

//	
 copy	
 data
 cudaMemcpy(...);

//	
 execute	
 kernel

 cudaRun<<<..>>>(...);

	
 	
 	
 	
 ...
 cudaThreadSynchronize();

//	
 serial	
 code
 printf(“Running..”\n);

	
 	
 	
 	
 ...
 exit (0);
}

GPU
CUDA	
 Kernel	
 Code

//	
 kernel
___global___
void cudaRun(...) {
 ...
}

CPU

...

Hello World v.1.0: Basic C Program
#include <stdio.h>

int main() {
 printf(“Hello world!”\n);
 exit (0);
}

nvcc -o hello hello.cu

OUTPUT:

Hello World!

Compiling CUDA Code

• nvcc –o <exe> <source_file> -I/usr/local/cuda/include

 –L/usr/local/cuda/lib –lcuda –lcudart

• If a Cuda code includes device code, the file must
have the extension .cu.

• nvcc separates out code for the CPU and code for
the GPU and compiles code.

• It needs regular C compiler installed for the
CPU code.

directories for the #include files

directories for libraries libraries to be linked

Executing a CUDA Program

• ./a.out

• Host code starts running.

• When first encounter device kernel, GPU code
physically sent to GPU and function launched on GPU.

• Hence first launch will be slow!!

Compilation Process

• nvcc “wrapper” divides code
into host and device parts.

• Host part compiled by
regular C compiler.

• Device part compiled by the
NVIDIA “ptxas” assembler.

• Two compiled parts
combined into one
executable.

nvcc

gcc ptxas

executable

Combine
Object file

nvcc –o prog prog.cu –I/includepath -L/libpath

Executable file a “fat” binary” with
both host and device code

ptxas = PTX assembler =
parallel thread execution

Hello World v.2.0: Kernel Calls

• An empty function named “kernel” qualified
with the specifier __global__ (yes, there
are two underscores on each side)

• Indicates to the compiler that the code
should be run on the device, not the
host.

• A call to the empty device function with
“<<<1,1>>>”

• Within the “<<<“ and “>>>” brackets
are memory arguments (for the
blocks and threads) and within the
parentheses are the parameter
arguments (that you normally use in
C).

#include <stdio.h>

int main() {
 kernel<<<1,1>>>();
 printf(“Hello world!\n”);
 exit (0);
}

__global__ void kernel () {
 // does nothing
}

OUTPUT:

Hello World!

CUDA Kernel Routines

• A kernel routine is executed on the device. This one set of
instructions is executed by each allocated thread (SIMT).

• The kernel code is mostly the same as C. One exception is that
each kernel code has an associated thread ID so that it can
access different data (more on this later).

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

CUDA Function Declarations

host host __host__ float HostFunc()

host device __global__ void KernelFunc()

device device __device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

Hello World v.3.0: Parameter Passing

#include <stdio.h>

__global__ void add (int a, int b, int *c);

int main() {
 int c;
 int *dev_c;

 cudaMalloc((void**)&dev_c, sizeof(int));

 add<<<1,1>>>(2,7,dev_c);

 cudaMemcpy(&c, dev_c, sizeof(int),
 cudaMemcpyDeviceToHost);

 printf(“Hello world!\n”);
 printf(“2 + 7 = %d\n”, c);

 cudaFree(dev_c);

 exit (0);
}

__global__ void add (int a, int b, int *c) {
 c[0] = a + b;
}

• Parameter passing is similar to C.

• There exists a separate set of host + device
memory.

• We need to allocate memory to use it on
the device.

• We need to copy memory from the host to
the device and/or vice versa via cudaMemcpy.

• CudaMalloc (similar to malloc) allocates
global memory on the device.

• CudaFree (similar to free) deallocates global
memory on the device.

• Of course, capable of mathematic operations.

OUTPUT:

Hello World!
2 + 7 = 9

CPU and GPU Memory

• A compiled CUDA program has:

• 1) code executed on the CPU

• 2) (kernel) code executed on the
GPU

• The CPU and GPU memories are distinct
and separate. Therefore, we need to:

• 1) allocate a set of host data and
device data and

• 2) explicitly transfer data from the
CPU to the GPU and vice versa.

Copy from
CPU to
GPU

Copy from
GPU to
CPU

GPU

CPU

CPU main memory

GPU global memory

Allocating and Deallocating Device Memory Space via
cudaMalloc and cudaFree

• Allocating Memory: allocates object in device global
memory and returns pointer to it.

• int *dev_C;

• int size = N *sizeof(int);

• cudaMalloc((void**)&dev_C, size);

• Deallocating Memory: free object from device global
memory

• cudaFree(dev_C)

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

Transferring Data via cudaMemcpy

• cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

• cudaMemcpy(c, dev_c, size, cudaMemcpyHostToDevice);

• “dev_a” and “dev_c” are pointers to device data

• “a” and “c” are pointers to host data

• “size” is the size of the data

• “cudaMemcpyHostToDevice” and “cudaMemcpyDeviceToHost” tells
cudaMemcpy the source and estination of the operation.

Destination Source

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

Hello World v.4.0: Vector Addition
#define N 256
#include <stdio.h>

__global__ void vecAdd (int *a, int *b, int *c);

int main() {
 int a[N], b[N], c[N];
 int *dev_a, *dev_b, *dev_c;

 // initialize a and b with real values (NOT SHOWN)

 size = N * sizeof(int);

 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, size);

 cudaMemcpy(dev_a, a, size,cudaMemcpyHostToDevice);

 cudaMemcpy(dev_b, b, size,cudaMemcpyHostToDevice);

 vecAdd<<<1,N>>>(dev_a,dev_b,dev_c);

 cudaMemcpy(c, dev_c, size,cudaMemcpyDeviceToHost);

 cudaFree(dev_a);
 cudaFree(dev_b);
 cudaFree(dev_c);

 exit (0);
}

__global__ void vecAdd (int *a, int *b, int *c) {
 int i = threadIdx.x;
 c[i] = a[i] + b[i];
}

• CUDA gives each thread a unique
ThreadID to distinguish between each
other even though the kernel instructions
are the same.

• In our example, in the kernel call the
memory arguments specify 1 block and N
threads.

OUTPUT:

GPU Thread Structure

• A CUDA kernel is executed on an
array or matrix of threads.

• All threads run the same code
(SIMT)

• Each threads has an ID that is
uses to compute memory
addresses and make control
decisions.

• Block ID: 1D or 2D

• Thread ID: 1D, 2D, or 3D

• Simplifies memory addressing
when processing
multidimensional data

15

Can be 1 or 2
dimensions

Can be 1, 2 or
3 dimensions

