CSC 391/691: GPU Programming

CUDA Memory Model

Fall 2011

Copyright © 2011 Samuel S. Cho

Basic CUDA Memory Routines

® At the host code level, there are library routines for:

memory allocation on graphics card
data transfer to/from device memory
constants

texture arrays (useful for lookup tables)
ordinary data

etc.

CUDA Device Memory Allocation

® cudaMalloc()
® Allocates object in the device global memory
® Requires two parameters
® Address of a pointer to the allocated object
® Size of allocated object
® cudaFree()
® Frees objects from device global memory

® Pointer to freed object

CUDA Memory Model

Each thread can:

Read/write per-thread
registers

Read/write per-thread
local memory

Read/write per-block

shared memory -

Grid

Block (0, 0),

=

Thread (0, 0) Thread (1, 0

1 1

Block (1, 0),

v

Thread (0, 0))

Thread (1, 0))

4

4

Read/write per-grid
global memory

Read/only per-grid
constant memory

<
<

CUDA Memory Rules

Currently can only transfer data from host to global (and constant
memory) and not host directly to shared.

Constant memory used for data that does not change (i.e. read-
only by GPU)

Shared memory is said to provide up to |5x speed of global
memory

Registers have similar speed to shared memory if reading same
address or no bank conflicts.

CUDA Memory Lifetimes and Scopes

Variable Declaration Memory Scope Lifetime
int Registervar; register thread kernel
__device _ local int LocalVar; local hread k |
int ArrayVar[10]; oca threa erne
i h i h Var;

__device _ shared int SharedVar shared block kernel
device int GlobalVar; . o
— — global grid application
device constant int ConstantVar; . o
— — — — constant grid application

° __device___is optional when used with __local__, _ shared ,or __ constant _

L Automatic variables without any qualifier reside in a register.

L Except arrays that reside in local memory
L scalar variables reside in fast, on-chip registers
L shared variables reside in fast, on-chip memories

L thread-local arrays and global variables reside in uncached off-chip memory

L constant variables reside in cached off-chip memory

CUDA Variable Type Scales

Variable Declaration Instances Visibility
int RegisterVar; 100,000’ |
e e o, 100000 |
__device _ shared int SharedVar; 100’ 100’s
__device int GlobalVar; | 100,000’
__device _ constant int ConstantVar; | 100,000’

® |00Ks per-thread variables, R/W by each thread.
® |00s shared variables, each R/W by 100s of threads in each block.
® | global variable is R/W by 100Ks threads entire device.

® | constant variable is readable by 100Ks threads in entire device.

CUDA Variable Type Performances

Variable Declaration Memory Penalty
int RegisterVar; .
register I x
__device _ local int LocalVar; local 100
int ArrayVar[10]; oca X
device shared int SharedVar;
— — — — shared I x
__device int GlobalVar; global 100x
device constant int ConstantVar;
— —_— — constant I x

® scalar variables reside in fast, on-chip registers
® shared variables reside in fast, on-chip memories

® thread-local arrays and global variables reside in
uncached off-chip memory

® constant variables reside in cached off-chip memory

Where to declare variables?

[Can the host access it!?]

Yes

No

Outside of any function

Inside the kernel

___constant___ int ConstantVar;
__device_ int GlobalVar;

int LocalVar;
int ArrayVar[10];
__shared___ int SharedVar;

Example: Thread Local Variables

#define N 1618 // available to all threads in device

__device _ int globalvar; // global variable

__global _ void hello(float2 *ps)

{

}

// localVar goes in a register
int localVar = ps[threadIdx.x];

// per-thread arrayVar goes in off-chip memory
int arrayVar[10];

// magic happens here

int main(int argc, char **argv) {

//

Example: Shared Variables Motivation

® Global Memory Issues:

® | ong delays, slow.
® Access congestion.

® Cannot synchronize
accesses.

® Need to ensure no
conflicts of accesses
between threads.

® |dea: Eliminate
redundancy by sharing
data.

#define SIZE 628

// compute result[i] = input[i] - input[i-1]

__global void adj_diff naive(int *result, int *input)

{
// compute this thread’s global index
unsigned int i = threadIdx.x;

if (i < N)
{
// each thread loads two elements from global memory:
// once by thread i and another by thread i+l
int x i = input[i];
int x i minus _one = input[i-1];

result[i] = x i - x i minus one;

Example: Shared Variables

Shared memory is on the
GPU chip and very fast.

Separate data available to
all threads in one block.

Declared inside function
bodies.

Scope of block and
lifetime of kernel call.

So each block would have

its own array
s_data[BLOCK_SIZE].

#define BLOCK_SIZE 16

// optimized version of adjacent difference

{

global void adj_diff(int *result, int *input)

// shorthand for threadIdx.x
int tx = threadIdx.x;

// allocate a _ shared array, one element per thread

__shared int s _data[BLOCK SIZE];

// each thread reads one element to s_data
unsigned int i = blockDim.x * blockIdx.x + tx;
s _data[tx] = input[i];

// avoid race condition: ensure all loads complete
// before continuing

__syncthreads() ;

if (tx < N)
result[i] = s_data[tx] - s_data[tx-1];

Shared Variables Issues

Shared memory is not immediately synchronized after access.

Usually it is the writes that matter.

Use _ syncthreads() before you read data that has been altered.

Shared memory is very limited (Fermi has up to 48KB per GPU
core, NOT per block)

Hence may have to divide your data into “chunks”

Programming Strategy

® Global memory (DRAM) is slower than shared memory.

® So,a profitable way of performing computation on the device is to
tile data to take advantage of fast shared memory:

® Partition data into subsets that fit into shared memory
e Handle each data subset with one thread block by:

® Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism.

® Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any
data element.

® Copying results from shared memory to global memory

Programming Strategy

Partition data into subsets that fit into shared memory

Programming Strategy

=

5

5

=

® Handle each data subset with one thread block as follows:

Programming Strategy

B e

® | oading the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

Programming Strategy

¢
Bl

Perform the computation on the subset from shared memory; each thread
can efficiently multi-pass over any data element

Programming Strategy

]

_

885

]

J

_

885

J

]

_

835

J

_IJ

”_[_:_:___
355

. J

® Copy the results from shared memory back to global memory.

Race Condition

__global void race(void)

{

__shared int my shared variable;
my shared variable = threadIdx.x;

}

® The result is undefined.

® [he order in which the threads access a
variable is not known without explicit
coordination.

Thread Coordination

{

}

global _ void share data(int *input)

__shared int data[BLOCK_SIZE];
data[threadIdx.x] = input[blockDim.x * blockIdx.x + threadIdx.x];
__syncthreads() ;

The state of the entire data array is now well-defined for all threads
in the block.

Use barriers (e.g., _syncthreads) to ensure data is ready for access.

Atomics as Barriers

e CUDA provides atomic operations to deal with race conditions.

® An atomic operation guarantees that only a single thread has access to a piece
of memory while an operation completes.

® The name atomic comes from the fact that it is uninterruptible. (i.e.,
operations which appear indivisible from the perspective of other threads.)

® Atomic operations only work with signed and unsigned integers (except
AtomicExch)

e Different types of atomic instructions:
e Addition/subtraction: atomicAdd, atomicSub
e Minimum/maximum: atomicMin, atomicMax
e Conditional increment/decrement: atomiclnc, atomicDec
® Exchange/compare-and-swap: atomicExch, atomicCAS

® More types in Fermi: atomicAnd, atomicOr, atomicXor

Atomic Operations

// assume *result is initialized to 0

__global _ void sum(int *input, int *result)
{
atomicAdd (result, input[threadIdx.x]);

}

Use atomic operations (e.g., atomicAdd) to ensure exclusive access to a variable and avoid race
conditions.

An atomic operation is capable of reading, modifying, and writing a value back to memory without the
interference of any other threads, which guarantees that a race condition won’t occur.

Atomic operations in CUDA generally work for both shared memory and global memory.

Atomic operations in shared memory are generally used to prevent race conditions between
different threads within the same thread block.

Atomic operations in global memory are used to prevent race conditions between two different
threads regardless of which thread block they are in.

After this kernel exits, the value of *result will be the sum of the inputs.

Atomic operations are expensive; they imply serialized access to a variable.

Atomic Histogram Example

// Determine frequency of colors in a picture
// colors have already been converted into integers
// Each thread looks at one pixel and increments
// a counter atomically
__global void histogram(int* color, int* buckets)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int ¢ = colors[i];
atomicAdd (&buckets[c], 1);
}

® atomicAdd returns the previous value at a
certain address.

® Useful for grabbing variable amounts of
data from the list.

Compare and Swap

int atomicCAS (int* address, int compare, int val)

If compare equals old value stored at address then val is stored
at address instead.

In either case, routine returns the value of old

Seems a bizarre routine at first sight, but can be very useful for
atomic locks.

Most general type of atomic.

int atomicCAS (int* address, int oldval, int wval)
{
int old_reg val = *address;
if (old_reg val == compare) *address = val;
return old reg val;

}

Hierarchical Atomics

® Divide and Conquer
® Per-thread atomicAdd toa __ shared partial sum.

® Per-block atomicAdd to the total sum.

Hierarchical Atomics

__global void sum(int *input, int *result)
{

__shared int partial sum;
// thread 0 is responsible for initializing partial sum
if (threadIdx.x == 0)

partial sum = O;

__syncthreads() ;

// each thread updates the partial sum
atomicAdd (&partial sum, input[threadIdx.x]);

__syncthreads() ;
// thread 0 updates the total sum

if (threadlIdx.x == 0)
atomicAdd (result, partial_ sum);

® Divide and Conquer
® Per-thread atomicAdd toa __ shared partial sum.

® Per-block atomicAdd to the total sum.

Global Min/Max

// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow
__global void global max naive(int* values, int* gl max)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
atomicMax (gl_max,values[i]);

}

Single value causes serial bottleneck.
Create hierarchy of values for more parallelism.

Performance will still be slow, so use judiciously.

__global void global max(int* values, int* gl max,
int *local max, int num local)

{ int i = blockIdx.x * blockDim.x + threadIdx.x;
int val = values[i];
int ilocal = i % num local;
int old max = atomicMax(&local max[ilocal], val);
// update global maximum only if new local maximum is found
if (old val < val) {

atomicMax (gl _max, local max[ilocal]);

}

Atomics Overview

® Atomics are slower than normal load/store.

® Most of these are operations on signed/
unsigned integers (floats available for some):

® quite fast for data in shared memory
® slower for data in device memory

® Note:You can have the whole machine
queuing on a single location in memory.

