
CUDA Memory Model

Copyright © 2011 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2011

Basic CUDA Memory Routines

• At the host code level, there are library routines for:

• memory allocation on graphics card

• data transfer to/from device memory

• constants

• texture arrays (useful for lookup tables)

• ordinary data

• etc.

CUDA Device Memory Allocation

• cudaMalloc()

• Allocates object in the device global memory

• Requires two parameters

• Address of a pointer to the allocated object

• Size of allocated object

• cudaFree()

• Frees objects from device global memory

• Pointer to freed object

CUDA Memory Model

• Each thread can:

• Read/write per-thread
registers

• Read/write per-thread
local memory

• Read/write per-block
shared memory

• Read/write per-grid
global memory

• Read/only per-grid
constant memory

Thread (1, 0)‏

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

Thread (1, 0)‏

CUDA Memory Rules

• Currently can only transfer data from host to global (and constant
memory) and not host directly to shared.

• Constant memory used for data that does not change (i.e. read-
only by GPU)

• Shared memory is said to provide up to 15x speed of global
memory

• Registers have similar speed to shared memory if reading same
address or no bank conflicts.

CUDA Memory Lifetimes and Scopes

• __device__ is optional when used with __local__, __shared__, or __constant__

• Automatic variables without any qualifier reside in a register.

• Except arrays that reside in local memory

• scalar variables reside in fast, on-chip registers

• shared variables reside in fast, on-chip memories

• thread-local arrays and global variables reside in uncached off-chip memory

• constant variables reside in cached off-chip memory

Variable Declaration Memory Scope Lifetime

 int RegisterVar; register thread kernel

__device__ __local__ int LocalVar;
 int ArrayVar[10]; local thread kernel

__device__ __shared__ int SharedVar; shared block kernel

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

CUDA Variable Type Scales

• 100Ks per-thread variables, R/W by each thread.

• 100s shared variables, each R/W by 100s of threads in each block.

• 1 global variable is R/W by 100Ks threads entire device.

• 1 constant variable is readable by 100Ks threads in entire device.

Variable Declaration Instances Visibility

 int RegisterVar; 100,000’s 1

__device__ __local__ int LocalVar;
 int ArrayVar[10]; 100,000’s 1

__device__ __shared__ int SharedVar; 100’s 100’s

__device__ int GlobalVar; 1 100,000’s

__device__ __constant__ int ConstantVar; 1 100,000’s

CUDA Variable Type Performances

• scalar variables reside in fast, on-chip registers

• shared variables reside in fast, on-chip memories

• thread-local arrays and global variables reside in
uncached off-chip memory

• constant variables reside in cached off-chip memory

Variable Declaration Memory Penalty

 int RegisterVar; register 1x

__device__ __local__ int LocalVar;
 int ArrayVar[10]; local 100x

__device__ __shared__ int SharedVar; shared 1x

__device__ int GlobalVar; global 100x

__device__ __constant__ int ConstantVar; constant 1x

Where to declare variables?

Can the host access it?

Outside of any function Inside the kernel

Yes No

__constant__ int ConstantVar;
__device__ int GlobalVar;

 int LocalVar;
 int ArrayVar[10];

__shared__ int SharedVar;

Example: Thread Local Variables

#define N 1618 // available to all threads in device

__device__ int globalVar; // global variable

__global__ void hello(float2 *ps)
{
 // localVar goes in a register
 int localVar = ps[threadIdx.x];

 // per-thread arrayVar goes in off-chip memory
 int arrayVar[10];

 // magic happens here
}

int main(int argc, char **argv) {

 // ...

}

Example: Shared Variables Motivation

• Global Memory Issues:

• Long delays, slow.

• Access congestion.

• Cannot synchronize
accesses.

• Need to ensure no
conflicts of accesses
between threads.

• Idea: Eliminate
redundancy by sharing
data.

#define SIZE 628

// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = threadIdx.x;

 if (i < N)
 {
 // each thread loads two elements from global memory:
 // once by thread i and another by thread i+1
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i – x_i_minus_one;
 }
}

Example: Shared Variables

• Shared memory is on the
GPU chip and very fast.

• Separate data available to
all threads in one block.

• Declared inside function
bodies.

• Scope of block and
lifetime of kernel call.

• So each block would have
its own array
s_data[BLOCK_SIZE].

#define BLOCK_SIZE 16

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
 // shorthand for threadIdx.x
 int tx = threadIdx.x;

 // allocate a __shared__ array, one element per thread
 __shared__ int s_data[BLOCK_SIZE];

 // each thread reads one element to s_data
 unsigned int i = blockDim.x * blockIdx.x + tx;
 s_data[tx] = input[i];

 // avoid race condition: ensure all loads complete
 // before continuing
 __syncthreads();

 if (tx < N)
 result[i] = s_data[tx] – s_data[tx–1];
 }

Shared Variables Issues

• Shared memory is not immediately synchronized after access.

• Usually it is the writes that matter.

• Use __syncthreads() before you read data that has been altered.

• Shared memory is very limited (Fermi has up to 48KB per GPU
core, NOT per block)

• Hence may have to divide your data into “chunks”

Programming Strategy

• Global memory (DRAM) is slower than shared memory.

• So, a profitable way of performing computation on the device is to
tile data to take advantage of fast shared memory:

• Partition data into subsets that fit into shared memory

• Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism.

• Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any
data element.

• Copying results from shared memory to global memory

Programming Strategy

• Partition data into subsets that fit into shared memory

Programming Strategy

• Handle each data subset with one thread block as follows:

Programming Strategy

• Loading the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

Programming Strategy

• Perform the computation on the subset from shared memory; each thread
can efficiently multi-pass over any data element

Programming Strategy

• Copy the results from shared memory back to global memory.

Race Condition

• The result is undefined.

• The order in which the threads access a
variable is not known without explicit
coordination.

__global__ void race(void)
{
 __shared__ int my_shared_variable;
 my_shared_variable = threadIdx.x;
}

Thread Coordination

• The state of the entire data array is now well-defined for all threads
in the block.

• Use barriers (e.g., __syncthreads) to ensure data is ready for access.

__global__ void share_data(int *input)
{
 __shared__ int data[BLOCK_SIZE];
 data[threadIdx.x] = input[blockDim.x * blockIdx.x + threadIdx.x];
 __syncthreads();
}

Atomics as Barriers

• CUDA provides atomic operations to deal with race conditions.

• An atomic operation guarantees that only a single thread has access to a piece
of memory while an operation completes.

• The name atomic comes from the fact that it is uninterruptible. (i.e.,
operations which appear indivisible from the perspective of other threads.)

• Atomic operations only work with signed and unsigned integers (except
AtomicExch)

• Different types of atomic instructions:

• Addition/subtraction: atomicAdd, atomicSub

• Minimum/maximum: atomicMin, atomicMax

• Conditional increment/decrement: atomicInc, atomicDec

• Exchange/compare-and-swap: atomicExch, atomicCAS

• More types in Fermi: atomicAnd, atomicOr, atomicXor

Atomic Operations

• Use atomic operations (e.g., atomicAdd) to ensure exclusive access to a variable and avoid race
conditions.

• An atomic operation is capable of reading, modifying, and writing a value back to memory without the
interference of any other threads, which guarantees that a race condition won’t occur.

• Atomic operations in CUDA generally work for both shared memory and global memory.

• Atomic operations in shared memory are generally used to prevent race conditions between
different threads within the same thread block.

• Atomic operations in global memory are used to prevent race conditions between two different
threads regardless of which thread block they are in.

• After this kernel exits, the value of *result will be the sum of the inputs.

• Atomic operations are expensive; they imply serialized access to a variable.

// assume *result is initialized to 0

__global__ void sum(int *input, int *result)
{
 atomicAdd(result, input[threadIdx.x]);
}

Atomic Histogram Example

• atomicAdd returns the previous value at a
certain address.

• Useful for grabbing variable amounts of
data from the list.

// Determine frequency of colors in a picture
// colors have already been converted into integers
// Each thread looks at one pixel and increments
// a counter atomically
__global__ void histogram(int* color, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 atomicAdd(&buckets[c], 1);
}

Compare and Swap

• If compare equals old value stored at address then val is stored
at address instead.

• In either case, routine returns the value of old

• Seems a bizarre routine at first sight, but can be very useful for
atomic locks.

• Most general type of atomic.

int atomicCAS(int* address, int compare, int val)

int atomicCAS(int* address, int oldval, int val)
{
 int old_reg_val = *address;
 if (old_reg_val == compare) *address = val;
 return old_reg_val;
}

Hierarchical Atomics

S0 S1 S2 Sn

S

• Divide and Conquer

• Per-thread atomicAdd to a __shared__ partial sum.

• Per-block atomicAdd to the total sum.

Hierarchical Atomics

• Divide and Conquer

• Per-thread atomicAdd to a __shared__ partial sum.

• Per-block atomicAdd to the total sum.

__global__ void sum(int *input, int *result)
{
 __shared__ int partial_sum;

 // thread 0 is responsible for initializing partial_sum
 if (threadIdx.x == 0)
 partial_sum = 0;

 __syncthreads();

 // each thread updates the partial sum
 atomicAdd(&partial_sum, input[threadIdx.x]);

 __syncthreads();

 // thread 0 updates the total sum
 if (threadIdx.x == 0)
 atomicAdd(result, partial_sum);
}

Global Min/Max

• Single value causes serial bottleneck.

• Create hierarchy of values for more parallelism.

• Performance will still be slow, so use judiciously.

// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow
__global__ void global_max_naive(int* values, int* gl_max)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 atomicMax(gl_max,values[i]);
}

__global__ void global_max(int* values, int* gl_max,
 int *local_max, int num_local)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int val = values[i];

 int ilocal = i % num_local;

 int old_max = atomicMax(&local_max[ilocal], val);

 // update global maximum only if new local maximum is found
 if (old_val < val) {
 atomicMax(gl_max, local_max[ilocal]);
 }
}

Atomics Overview

• Atomics are slower than normal load/store.

• Most of these are operations on signed/
unsigned integers (floats available for some):

• quite fast for data in shared memory

• slower for data in device memory

• Note: You can have the whole machine
queuing on a single location in memory.

