
CUDA Memory Model

Copyright © 2011 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2011

Basic CUDA Memory Routines

• At the host code level, there are library routines for:

• memory allocation on graphics card

• data transfer to/from device memory

• constants

• texture arrays (useful for lookup tables)

• ordinary data

• etc.

CUDA Device Memory Allocation

• cudaMalloc()

• Allocates object in the device global memory

• Requires two parameters

• Address of a pointer to the allocated object

• Size of allocated object

• cudaFree()

• Frees objects from device global memory

• Pointer to freed object

CUDA Memory Model

• Each thread can:

• Read/write per-thread
registers

• Read/write per-thread
local memory

• Read/write per-block
shared memory

• Read/write per-grid
global memory

• Read/only per-grid
constant memory

Thread (1, 0)

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Thread (1, 0)

CUDA Memory Rules

• Currently can only transfer data from host to global (and constant
memory) and not host directly to shared.

• Constant memory used for data that does not change (i.e. read-
only by GPU)

• Shared memory is said to provide up to 15x speed of global
memory

• Registers have similar speed to shared memory if reading same
address or no bank conflicts.

CUDA Memory Lifetimes and Scopes

• __device__ is optional when used with __local__, __shared__, or __constant__

• Automatic variables without any qualifier reside in a register.

• Except arrays that reside in local memory

• scalar variables reside in fast, on-chip registers

• shared variables reside in fast, on-chip memories

• thread-local arrays and global variables reside in uncached off-chip memory

• constant variables reside in cached off-chip memory

Variable Declaration Memory Scope Lifetime

 int RegisterVar; register thread kernel

__device__ __local__ int LocalVar;
 int ArrayVar[10]; local thread kernel

__device__ __shared__ int SharedVar; shared block kernel

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

CUDA Variable Type Scales

• 100Ks per-thread variables, R/W by each thread.

• 100s shared variables, each R/W by 100s of threads in each block.

• 1 global variable is R/W by 100Ks threads entire device.

• 1 constant variable is readable by 100Ks threads in entire device.

Variable Declaration Instances Visibility

 int RegisterVar; 100,000’s 1

__device__ __local__ int LocalVar;
 int ArrayVar[10]; 100,000’s 1

__device__ __shared__ int SharedVar; 100’s 100’s

__device__ int GlobalVar; 1 100,000’s

__device__ __constant__ int ConstantVar; 1 100,000’s

CUDA Variable Type Performances

• scalar variables reside in fast, on-chip registers

• shared variables reside in fast, on-chip memories

• thread-local arrays and global variables reside in
uncached off-chip memory

• constant variables reside in cached off-chip memory

Variable Declaration Memory Penalty

 int RegisterVar; register 1x

__device__ __local__ int LocalVar;
 int ArrayVar[10]; local 100x

__device__ __shared__ int SharedVar; shared 1x

__device__ int GlobalVar; global 100x

__device__ __constant__ int ConstantVar; constant 1x

Where to declare variables?

Can the host access it?

Outside of any function Inside the kernel

Yes No

__constant__ int ConstantVar;
__device__ int GlobalVar;

 int LocalVar;
 int ArrayVar[10];

__shared__ int SharedVar;

Example: Thread Local Variables

#define N 1618 // available to all threads in device

__device__ int globalVar; // global variable

__global__ void hello(float2 *ps)
{
 // localVar goes in a register
 int localVar = ps[threadIdx.x];

 // per-thread arrayVar goes in off-chip memory
 int arrayVar[10];

 // magic happens here
}

int main(int argc, char **argv) {

 // ...

}

Example: Shared Variables Motivation

• Global Memory Issues:

• Long delays, slow.

• Access congestion.

• Cannot synchronize
accesses.

• Need to ensure no
conflicts of accesses
between threads.

• Idea: Eliminate
redundancy by sharing
data.

#define SIZE 628

// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = threadIdx.x;

 if (i < N)
 {
 // each thread loads two elements from global memory:
 // once by thread i and another by thread i+1
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i – x_i_minus_one;
 }
}

Example: Shared Variables

• Shared memory is on the
GPU chip and very fast.

• Separate data available to
all threads in one block.

• Declared inside function
bodies.

• Scope of block and
lifetime of kernel call.

• So each block would have
its own array
s_data[BLOCK_SIZE].

#define BLOCK_SIZE 16

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
 // shorthand for threadIdx.x
 int tx = threadIdx.x;

 // allocate a __shared__ array, one element per thread
 __shared__ int s_data[BLOCK_SIZE];

 // each thread reads one element to s_data
 unsigned int i = blockDim.x * blockIdx.x + tx;
 s_data[tx] = input[i];

 // avoid race condition: ensure all loads complete
 // before continuing
 __syncthreads();

 if (tx < N)
 result[i] = s_data[tx] – s_data[tx–1];
 }

Shared Variables Issues

• Shared memory is not immediately synchronized after access.

• Usually it is the writes that matter.

• Use __syncthreads() before you read data that has been altered.

• Shared memory is very limited (Fermi has up to 48KB per GPU
core, NOT per block)

• Hence may have to divide your data into “chunks”

Programming Strategy

• Global memory (DRAM) is slower than shared memory.

• So, a profitable way of performing computation on the device is to
tile data to take advantage of fast shared memory:

• Partition data into subsets that fit into shared memory

• Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism.

• Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any
data element.

• Copying results from shared memory to global memory

Programming Strategy

• Partition data into subsets that fit into shared memory

Programming Strategy

• Handle each data subset with one thread block as follows:

Programming Strategy

• Loading the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

Programming Strategy

• Perform the computation on the subset from shared memory; each thread
can efficiently multi-pass over any data element

Programming Strategy

• Copy the results from shared memory back to global memory.

Race Condition

• The result is undefined.

• The order in which the threads access a
variable is not known without explicit
coordination.

__global__ void race(void)
{
 __shared__ int my_shared_variable;
 my_shared_variable = threadIdx.x;
}

Thread Coordination

• The state of the entire data array is now well-defined for all threads
in the block.

• Use barriers (e.g., __syncthreads) to ensure data is ready for access.

__global__ void share_data(int *input)
{
 __shared__ int data[BLOCK_SIZE];
 data[threadIdx.x] = input[blockDim.x * blockIdx.x + threadIdx.x];
 __syncthreads();
}

Atomics as Barriers

• CUDA provides atomic operations to deal with race conditions.

• An atomic operation guarantees that only a single thread has access to a piece
of memory while an operation completes.

• The name atomic comes from the fact that it is uninterruptible. (i.e.,
operations which appear indivisible from the perspective of other threads.)

• Atomic operations only work with signed and unsigned integers (except
AtomicExch)

• Different types of atomic instructions:

• Addition/subtraction: atomicAdd, atomicSub

• Minimum/maximum: atomicMin, atomicMax

• Conditional increment/decrement: atomicInc, atomicDec

• Exchange/compare-and-swap: atomicExch, atomicCAS

• More types in Fermi: atomicAnd, atomicOr, atomicXor

Atomic Operations

• Use atomic operations (e.g., atomicAdd) to ensure exclusive access to a variable and avoid race
conditions.

• An atomic operation is capable of reading, modifying, and writing a value back to memory without the
interference of any other threads, which guarantees that a race condition won’t occur.

• Atomic operations in CUDA generally work for both shared memory and global memory.

• Atomic operations in shared memory are generally used to prevent race conditions between
different threads within the same thread block.

• Atomic operations in global memory are used to prevent race conditions between two different
threads regardless of which thread block they are in.

• After this kernel exits, the value of *result will be the sum of the inputs.

• Atomic operations are expensive; they imply serialized access to a variable.

// assume *result is initialized to 0

__global__ void sum(int *input, int *result)
{
 atomicAdd(result, input[threadIdx.x]);
}

Atomic Histogram Example

• atomicAdd returns the previous value at a
certain address.

• Useful for grabbing variable amounts of
data from the list.

// Determine frequency of colors in a picture
// colors have already been converted into integers
// Each thread looks at one pixel and increments
// a counter atomically
__global__ void histogram(int* color, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 atomicAdd(&buckets[c], 1);
}

Compare and Swap

• If compare equals old value stored at address then val is stored
at address instead.

• In either case, routine returns the value of old

• Seems a bizarre routine at first sight, but can be very useful for
atomic locks.

• Most general type of atomic.

int atomicCAS(int* address, int compare, int val)

int atomicCAS(int* address, int oldval, int val)
{
 int old_reg_val = *address;
 if (old_reg_val == compare) *address = val;
 return old_reg_val;
}

Hierarchical Atomics

S0 S1 S2 Sn

S

• Divide and Conquer

• Per-thread atomicAdd to a __shared__ partial sum.

• Per-block atomicAdd to the total sum.

Hierarchical Atomics

• Divide and Conquer

• Per-thread atomicAdd to a __shared__ partial sum.

• Per-block atomicAdd to the total sum.

__global__ void sum(int *input, int *result)
{
 __shared__ int partial_sum;

 // thread 0 is responsible for initializing partial_sum
 if (threadIdx.x == 0)
 partial_sum = 0;

 __syncthreads();

 // each thread updates the partial sum
 atomicAdd(&partial_sum, input[threadIdx.x]);

 __syncthreads();

 // thread 0 updates the total sum
 if (threadIdx.x == 0)
 atomicAdd(result, partial_sum);
}

Global Min/Max

• Single value causes serial bottleneck.

• Create hierarchy of values for more parallelism.

• Performance will still be slow, so use judiciously.

// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow
__global__ void global_max_naive(int* values, int* gl_max)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 atomicMax(gl_max,values[i]);
}

__global__ void global_max(int* values, int* gl_max,
 int *local_max, int num_local)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int val = values[i];

 int ilocal = i % num_local;

 int old_max = atomicMax(&local_max[ilocal], val);

 // update global maximum only if new local maximum is found
 if (old_val < val) {
 atomicMax(gl_max, local_max[ilocal]);
 }
}

Atomics Overview

• Atomics are slower than normal load/store.

• Most of these are operations on signed/
unsigned integers (floats available for some):

• quite fast for data in shared memory

• slower for data in device memory

• Note: You can have the whole machine
queuing on a single location in memory.

