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1 The simple linear model

Suppose we reckon that some variable of interest, y, is ‘driven by’ some other variable x. We then call y the
dependent variable and x the independent variable. In addition, suppose that the relationship between y and x is
basically linear, but is inexact: besides its determination by x, y has a random component, u, which we call the
‘disturbance’ or ‘error’.

Let i index the observations on the data pairs (x, y). The simple linear model formalizes the ideas just stated:

yi = β0 + β1xi + ui

The parameters β0 and β1 represent the y-intercept and the slope of the relationship, respectively.

In order to work with this model we need to make some assumptions about the behavior of the error term. For now
we’ll assume three things:

E(ui ) = 0 u has a mean of zero for all i
E(u2

i ) = σ
2
u it has the same variance for all i

E(ui u j ) = 0, i 6= j no correlation across observations

We’ll see later how to check whether these assumptions are met, and also what resources we have for dealing with
a situation where they’re not met.

We have just made a bunch of assumptions about what is ‘really going on’ between y and x, but we’d like to put
numbers on the parameters β0 and β1. Well, suppose we’re able to gather a sample of data on x and y. The task
of estimation is then to come up with coefficients—numbers that we can calculate from the data, call them β̂0 and
β̂1—which serve as estimates of the unknown parameters.

If we can do this somehow, the estimated equation will have the form

ŷi = β̂0 + β̂1x.

We define the estimated error or residual associated with each pair of data values as the actual yi value minus the
prediction based on xi along with the estimated coefficients

ûi = yi − ŷi = yi −
(
β̂0 + β̂1xi

)
In a scatter diagram of y against x, this is the vertical distance between observed yi and the ‘fitted value’, ŷi , as
shown in Figure 1.

Note that we are using a different symbol for this estimated error (ûi ) as opposed to the ‘true’ disturbance or error
term defined above (ui ). These two will coincide only if β̂0 and β̂1 happen to be exact estimates of the regression
parameters β0 and β1.

The most common technique for determining the coefficients β̂0 and β̂1 is Ordinary Least Squares (OLS): values
for β̂0 and β̂1 are chosen so as to minimize the sum of the squared residuals or SSR. The SSR may be written as

SSR = 6û2
i = 6(yi − ŷi )

2
= 6(yi − β̂0 − β̂1xi )

2

(It should be understood throughout that 6 denotes the summation
∑n

i=1, where n is the number of observations
in the sample). The minimization of SSR is a calculus exercise: we need to find the partial derivatives of SSR
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Figure 1: Regression residual

with respect to both β̂0 and β̂1 and set them equal to zero. This generates two equations (known as the ‘normal
equations’ of least squares) in the two unknowns, β̂0 and β̂1. These equations are then solved jointly to yield the
estimated coefficients.

We start out from:

∂SSR/∂β̂0 = −26(yi − β̂0 − β̂1xi ) = 0 (1)

∂SSR/∂β̂1 = −26xi (yi − β̂0 − β̂1xi ) = 0 (2)

Equation (1) implies that

6yi − nβ̂0 − β̂16xi = 0

⇒ β̂0 = ȳ − β̂1 x̄ (3)

while equation (2) implies that

6xi yi − β̂06xi − β̂16x2
i = 0 (4)

We can now substitute for β̂0 in equation (4), using (3). This yields

6xi yi − (ȳ − β̂1 x̄)6xi − β̂16x2
i = 0

⇒ 6xi yi − ȳ6xi − β̂1(6x2
i − x̄6xi ) = 0

⇒ β̂1 =
6xi yi − ȳ6xi

6x2
i − x̄6xi

(5)

Equations (3) and (4) can now be used to generate the regression coefficients. First use (5) to find β̂1, then use (3)
to find β̂0.

2 Goodness of fit

The OLS technique ensures that we find the values of β̂0 and β̂1 which ‘fit the sample data best’, in the specific
sense of minimizing the sum of squared residuals. There is no guarantee, however, that β̂0 and β̂1 correspond
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exactly with the unknown parameters β0 and β1. Neither, in fact, is there any guarantee that the ‘best fitting’ line
fits the data well: maybe the data do not even approximately lie along a straight line relationship. So how do we
assess the adequacy of the ‘fitted’ equation?

First step: find the residuals. For each x-value in the sample, compute the fitted value or predicted value of y, using
ŷi = β̂0 + β̂1xi .

Then subtract each fitted value from the corresponding actual, observed, value of yi . Squaring and summing these
differences gives the SSR, as shown in Table 1. In this example, based on a sample of 14 houses, yi is sale price in
thousands of dollars and xi is square footage of living area.

Table 1: Example of finding residuals

Given β̂0 = 52.3509 ; β̂1 = 0.1388

data (xi ) data (yi ) fitted (ŷi ) ûi = yi − ŷi û2
i

1065 199.9 200.1 −0.2 0.04
1254 228.0 226.3 1.7 2.89
1300 235.0 232.7 2.3 5.29
1577 285.0 271.2 13.8 190.44
1600 239.0 274.4 −35.4 1253.16
1750 293.0 295.2 −2.2 4.84
1800 285.0 302.1 −17.1 292.41
1870 365.0 311.8 53.2 2830.24
1935 295.0 320.8 −25.8 665.64
1948 290.0 322.6 −32.6 1062.76
2254 385.0 365.1 19.9 396.01
2600 505.0 413.1 91.9 8445.61
2800 425.0 440.9 −15.9 252.81
3000 415.0 468.6 −53.6 2872.96

6 = 0 6 = 18273.6
= SSR

Now, obviously, the magnitude of the SSR will depend in part on the number of data points in the sample (other
things equal, the more data points, the bigger the sum of squared residuals). To allow for this we can divide though
by the ‘degrees of freedom’, which is the number of data points minus the number of parameters to be estimated
(2 in the case of a simple regression with an intercept term). Let n denote the number of data points (or ‘sample
size’), then the degrees of freedom, d.f. = n−2. The square root of the resulting expression is called the estimated
standard error of the regression (σ̂ ):

σ̂ =

√
SSR
n− 2

The standard error gives us a first handle on how well the fitted equation fits the sample data. But what is a ‘big’
σ̂ and what is a ‘small’ one depends on the context. The standard error is sensitive to the units of measurement of
the dependent variable.

A more standardized statistic, which also gives a measure of the ‘goodness of fit’ of the estimated equation, is R2.
This statistic (sometimes known as the coefficient of determination) is calculated as follows:

R2
= 1−

SSR
6(yi − ȳ)2

≡ 1−
SSR
SST

Note that SSR can be thought of as the ‘unexplained’ variation in the dependent variable—the variation ‘left over’
once the predictions of the regression equation are taken into account. The expression 6(yi − ȳ)2, on the other
hand, represents the total variation (total sum of squares or SST) of the dependent variable around its mean value.
So R2 can be written as 1 minus the proportion of the variation in yi that is ‘unexplained’; or in other words it
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shows the proportion of the variation in yi that is accounted for by the estimated equation. As such, it must be
bounded by 0 and 1.

0 ≤ R2
≤ 1

R2
= 1 is a ‘perfect score’, obtained only if the data points happen to lie exactly along a straight line; R2

= 0 is
perfectly lousy score, indicating that xi is absolutely useless as a predictor for yi .

To summarize: alongside the estimated regression coefficients β̂0 and β̂1, we can also examine the sum of squared
residuals (SSR), the regression standard error (σ̂ ) and/or the R2 value, in order to judge whether the best-fitting
line does in fact fit the data to an adequate degree.
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