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Population and sample

Population : an entire set of objects or units of observation of one sort
or another.

Sample : subset of a population.

Parameter versus statistic .

size mean variance proportion

Population: N µ σ 2 π

Sample: n x̄ s2 p
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Properties of estimators: sample mean

x̄ = 1
n

n∑
i=1

xi

To make inferences regarding the population mean, µ, we need to know
something about the probability distribution of this sample statistic, x̄.

The distribution of a sample statistic is known as a sampling
distribution . Two of its characteristics are of particular interest, the
mean or expected value and the variance or standard deviation.

E(x̄): Thought experiment: Sample repeatedly from the given
population, each time recording the sample mean, and take the average
of those sample means.
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If the sampling procedure is unbiased, deviations of x̄ from µ in the
upward and downward directions should be equally likely; on average,
they should cancel out.

E(x̄) = µ = E(X)
The sample mean is then an unbiased estimator of the population
mean.
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Efficiency

One estimator is more efficient than another if its values are more
tightly clustered around its expected value.

E.g. alternative estimators for the population mean: x̄ versus the
average of the largest and smallest values in the sample.

The degree of dispersion of an estimator is generally measured by the
standard deviation of its probability distribution (sampling
distribution). This goes under the name standard error .
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Standard error of sample mean

σx̄ = σ√
n

• The more widely dispersed are the population values around their
mean (larger σ ), the greater the scope for sampling error (i.e.
drawing by chance an unrepresentative sample whose mean differs
substantially from µ).

• A larger sample size (greater n) narrows the dispersion of x̄.
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Other statistics

Population proportion, π .

The corresponding sample statistic is the proportion of the sample
having the characteristic in question, p.

The sample proportion is an unbiased estimator of the population
proportion

E(p) = π
Its standard error is given by

σp =
√
π(1−π)

n
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Population variance, σ 2.

σ 2 = 1
N

N∑
i=1

(xi − µ)2

Estimator, sample variance:

s2 = 1
n− 1

n∑
i=1

(xi − x̄)2
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Shape of sampling distributions

Besides knowing expected value and standard error, we also need to
know the shape of a sampling distribution in order to put it to use.

Sample mean: Central Limit Theorem implies a Gaussian distribution,
for “large enough” samples.

Reminder:
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Not all sampling distributions are Gaussian, e.g. sample variance as
estimator of population variance. In this case the ratio (n− 1)s2/σ 2

follows a skewed distribution known as χ2, (chi-square ) with n− 1
degrees of freedom.

If the sample size is large the χ2 distribution converges towards the
normal.
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Confidence intervals

If we know the mean, standard error and shape of the distribution of a
given sample statistic, we can then make definite probability
statements about the statistic.

Example: µ = 100 and σ = 12 for a certain population, and we draw a
sample with n = 36 from that population.

The standard error of x̄ is σ/
√
n = 12/6 = 2, and a sample size of 36 is

large enough to justify the assumption of a Gaussian sampling
distribution. We know that the range µ ± 2σ encloses the central 95
percent of a normal distribution, so we can state

P(96 < x̄ < 104) ≈ .95

There’s a 95 percent probability that the sample mean lies within 4
units (= 2 standard errors) of the population mean, 100.
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Population mean unknown

If µ is unknown we can still say

P(µ − 4 < x̄ < µ + 4) ≈ .95

With probability .95 the sample mean will be drawn from within 4 units
of the unknown population mean.

We go ahead and draw the sample, and calculate a sample mean of
(say) 97. If there’s a probability of .95 that our x̄ came from within 4
units of µ, we can turn that around: we’re entitled to be 95 percent
confident that µ lies between 93 and 101.

We draw up a 95 percent confidence interval for the population mean
as x̄ ± 2σx̄.
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Population variance unknown

With σ unknown, we have to estimate the standard error of x̄.

sx̄ ≡ σ̂x̄ = s√
n

We can now reformulate our 95 percent confidence interval for µ:
x̄ ± 2sx̄.

Strictly speaking, the substitution of s for σ alters the shape of the
sampling distribution. Instead of being Gaussian it now follows the t
distribution, which looks very much like the Gaussian except that it’s a
bit “fatter in the tails”.
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The t distribution

Unlike the Gaussian, the t distribution is not fully characterized by its
mean and standard deviation: there is an additional factor, namely the
degrees of freedom (df).

• For estimating a population mean the df term is the sample size
minus 1.

• At low degrees of freedom the t distribution is noticeably more
“dispersed” than the Gaussian, meaning that a 95 percent
confidence interval would have to be wider (greater uncertainty).

• As the degrees of freedom increase, the t distribution converges
towards the Gaussian.

• Values enclosing the central 95 percent of the distribution:

Normal: µ ± 1.960σ

t(30): µ ± 2.042σ
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Further examples

The following information regarding the Gaussian distribution enables
you to construct a 99 percent confidence interval.

P(µ − 2.58σ < x < µ + 2.58σ) ≈ 0.99

Thus the 99 percent interval is x̄ ± 2.58σx̄.

If we want greater confidence that our interval straddles the unknown
parameter value (99 percent versus 95 percent) then our interval must
be wider (±2.58 standard errors versus ±2 standard errors).
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Estimating a proportion

An opinion polling agency questions a sample of 1200 people to assess
the degree of support for candidate X.

• Sample info: p = 0.56.

• Our single best guess at the population proportion, π , is then 0.56,
but we can quantify our uncertainty.

• The standard error of p is
√
π(1−π)/n. The value of π is unknown

but we can substitute p or, to be conservative, we can put π = 0.5
which maximizes the value of π(1−π).

• On the latter procedure, the estimated standard error is√
0.25/1200 = 0.0144.

• The large sample justifies the Gaussian assumption for the sampling
distribution; the 95 percent confidence interval is
0.56± 2× 0.0144 = 0.56± 0.0289.
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Generalizing the idea

Let θ denote a “generic parameter”.

1. Find an estimator (preferably unbiased) for θ.

2. Generate θ̂ (point estimate).

3. Set confidence level, 1−α.

4. Form interval estimate (assuming symmetrical distribution):

θ̂ ±maximum error for (1−α) confidence

“Maximum error” equals so many standard errors of such and such a
size. The number of standard errors depends on the chosen confidence
level (possibly also the degrees of freedom). The size of the standard
error, σθ̂, depends on the nature of the parameter being estimated and
the sample size.
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z-scores

Suppose the sampling distribution of θ̂ is Gaussian. The following
notation is useful:

z = x − µ
σ

The “standard normal score” or “z-score” expresses the value of a
variable in terms of its distance from the mean, measured in standard
deviations.

Example: µ = 1000 and σ = 50. The value x = 850 has a z-score of
−3.0: it lies 3 standard deviations below the mean.

Where the distribution of θ̂ is Gaussian we can write the 1−α
confidence interval for θ as

θ̂ ± σθ̂ zα/2
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β̂0 + β̂1x

ŷi

}
ûi

This is about as far as we can go in general terms. The specific formula
for σθ̂ depends on the parameter.
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The logic of hypothesis testing

Analogy between the set-up of a hypothesis test and a court of law.

Defendant on trial in the statistical court is the null hypothesis , some
definite claim regarding a parameter of interest.

Just as the defendant is presumed innocent until proved guilty, the null
hypothesis (H0) is assumed true (at least for the sake of argument) until
the evidence goes against it.

H0 is in fact:

Decision: True False

Reject Type I error Correct decision

P = α
Fail to reject Correct decision Type II error

P = β

1− β is the power of a test; trade-off between α and β.
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Choosing the significance level

How do we get to choose α (probability of Type I error)?

The calculations that compose a hypothesis test are condensed in a key
number, namely a conditional probability: the probability of observing
the given sample data, on the assumption that the null hypothesis is true.

This is called the p-value . If it is small, we can place one of two
interpretations on the situation:

(a) The null hypothesis is true and the sample we drew is an
improbable, unrepresentative one.

(b) The null hypothesis is false.

The smaller the p-value, the less comfortable we are with alternative
(a). (Digression) To reach a conclusion we must specify the limit of our
comfort zone, a p-value below which we’ll reject H0.
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Say we use a cutoff of .01: we’ll reject the null hypothesis if the p-value
for the test is ≤ .01.

If the null hypothesis is in fact true, what is the probability of our
rejecting it? It’s the probability of getting a p-value less than or equal
to .01, which is (by definition) .01.

In selecting our cutoff we selected α, the probability of Type I error.
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Example of hypothesis test

A maker of RAM chips claims an average access time of 60
nanoseconds (ns) for the chips. Quality control has the job of checking
that the production process is maintaining acceptable access speed:
they test a sample of chips each day.

Today’s sample information is that with 100 chips tested, the mean
access time is 63 ns with a standard deviation of 2 ns. Is this an
acceptable result?

Sould we go with the symmetrical hypotheses

H0:µ = 60 versus H1:µ ≠ 60 ?

Well, we don’t mind if the chips are faster than advertised.

So instead we adopt the asymmetrical hypotheses:

H0:µ ≤ 60 versus H1:µ > 60

Let α = 0.05.
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The p-value is P(x̄ ≥ 63 |µ ≤ 60), where n = 100 and s = 2.

• If the null hypothesis is true, E(x̄) is no greater than 60.

• The estimated standard error of x̄ is s/
√
n = 2/10 = .2.

• With n = 100 we can take the sampling distribution to be normal.

• With a Gaussian sampling distribution the test statistic is the z-score.

z = x̄ − µH0

sx̄
= 63− 60

.2
= 15

• p-value: P(z ≥ 15) ≈ 0.

• We reject H0 since (a) the p-value is smaller than the chosen
significance level, α = .05, or (b) the test statistic, z = 15, exceeds
z0.05 = 1.645. (These grounds are equivalent).
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Variations on the example

Suppose the test were as described above, except that the sample was
of size 10 instead of 100.

Given the small sample and the fact that the population standard
deviation, σ , is unknown, we could not justify the assumption of a
Gaussian sampling distribution for x̄. Rather, we’d have to use the t
distribution with df = 9.

The estimated standard error, sx̄ = 2/
√

10 = 0.632, and the test
statistic is

t(9) = x̄ − µH0

sx̄
= 63− 60

.632
= 4.74

The p-value for this statistic is 0.000529—a lot larger than for z = 15,
but still much smaller than the chosen significance level of 5 percent,
so we still reject the null hypothesis.
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In general the test statistic can be written as

test = θ̂ − θH0

sθ̂

That is, sample statistic minus the value stated in the null
hypothesis—which by assumption equals E(θ̂)—divided by the
(estimated) standard error of θ̂.

The distribution to which “test” must be referred, in order to obtain the
p-value, depends on the situation.
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Another variation

We chose an asymmetrical test setup above. What difference would it
make if we went with the symmetrical version,

H0:µ = 60 versus H1:µ ≠ 60 ?

We have to think: what sort of values of the test statistic should count
against the null hypothesis?

In the asymmetrical case only values of x̄ greater than 60 counted
against H0. A sample mean of (say) 57 would be consistent with µ ≤ 60;
it is not even prima facie evidence against the null.

Therefore the critical region of the sampling distribution (the region
containing values that would cause us to reject the null) lies strictly in
the upper tail.

But if the null hypothesis were µ = 60, then values of x̄ both
substantially below and substantially above 60 would count against it.
The critical region would be divided into two portions, one in each tail
of the sampling distribution.
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H0:µ = 60. Two-tailed test. Both high and low values count against H0.

α/2α/2

H0:µ ≤ 60. One-tailed test. Only high values count against H0.

α
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Practical consequence

We must double the p-value, before comparing it to α.

• The sample mean was 63, and the p-value was defined as the
probability of drawing a sample “like this or worse”, from the
standpoint of H0.

• In the symmetrical case, “like this or worse” means “with a sample
mean this far away from the hypothesized population mean, or
farther, in either direction”.

• So the p-value is P(x̄ ≥ 63∪ x̄ ≤ 57), which is double the value we
found previously.
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More on p-values

Let E denote the sample evidence and H denote the null hypothesis
that is “on trial”. The p-value can then be expressed as P(E|H).
This may seem awkward. Wouldn’t it be better to calculate the
conditional probability the other way round, P(H|E)?
Instead of working with the probability of obtaining a sample like the
one we in fact obtained, assuming the null hypothesis to be true, why
can’t we think in terms of the probability that the null hypothesis is
true, given the sample evidence?
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Recall the multiplication rule for probabilities, which we wrote as

P(A∩ B) = P(A)× P(B|A)

Swapping the positions of A and B we can equally well write

P(B ∩A) = P(B)× P(A|B)

And taking these two equations together we can infer that

P(A)× P(B|A) = P(B)× P(A|B)

or

P(B|A) = P(B)× P(A|B)
P(A)

This is Bayes’ rule . It provides a means of converting from a
conditional probability one way round to the inverse conditional
probability.
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Substituting E (Evidence) and H (null Hypothesis) for A and B, we get

P(H|E) = P(H)× P(E|H)
P(E)

We know how to find the p-value, P(E|H). To obtain the probability
we’re now canvassing as an alternative, P(H|E), we have to supply in
addition P(H) and P(E).

P(H) is the marginal probability of the null hypothesis and P(E) is the
marginal probability of the sample evidence.

Where are these going to come from??
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Confidence intervals and tests

The symbol α is used for both the significance level of a hypothesis
test (the probability of Type I error), and in denoting the confidence
level (1−α) for interval estimation.

There is an equivalence between a two-tailed hypothesis test at
significance level α and an interval estimate using confidence level
1−α.

Suppose µ is unknown and a sample of size 64 yields x̄ = 50, s = 10.
The 95 percent confidence interval for µ is then

50± 1.96
(

10√
64

)
= 50± 2.45 = 47.55 to 52.45

Suppose we want to test H0:µ = 55 using the 5 percent significance
level. No additional calculation is needed. The value 55 lies outside of
the 95 percent confidence interval, so we can conclude that H0 is
rejected.

32

In a two-tailed test at the 5 percent significance level, we fail to reject
H0 if and only if x̄ falls within the central 95 percent of the sampling
distribution, according to H0.

But since 55 exceeds 50 by more than the “maximum error”, 2.45, we
can see that, conversely, the central 95 percent of a sampling
distribution centered on 55 will not include 50, so a finding of x̄ = 50
must lead to rejection of the null.

“Significance level” and “confidence level” are complementary. �
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Digression
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The further we are from the center of the sampling distribution,
according to H0, the smaller the p-value.

Back to the main discussion.
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