The gig package

Jack Lucchetti Stefano Balietti

December 2023

Abstract

The gig package is a collection of gretl scripts to estimate univariate conditional
heteroskedasticity models.

Contents
Introduction 2
The models 3
2.1 The APARCH Family 3
2.2 The EGARCH model 3
How you do things 4
3.1 The GUlway e 4
3.2 Scripts: a plain-vanilla GARCH 8
3.3 Regressors e 10
3.4 Tweaking the model specification, 12
3.5 Forecasting L 13
Plots 13
Numerical issues 15
5.1 gigis slow, especially EGARCH 15
5.2 The maximisation algorithm fails to converge 15
5.3 The algorithm converges but complains about a singular Hessian 16

5.4 The algorithm converges, but the maximum is outside the admissible region! 16

List of functions 18
A1l Modelsetup e 18
A2 Estimation e, 19
A3 Output e 20
Bundle elements 24

1 Introduction

A general description of the models that gig can handle can be given by the following
system:

Era(y) = m'xy (1)
w=y— Ei(yy) = p=rntw (2)
hi =Vici(uwy) = v(up—1,up—2,...,hi—1,he—o, ...,) (3)

e = L (4)

Vhi

which could be read as follows: it is assumed (eq. 1) that the conditional expectation?
of an observable variable y; to an information set? F;_; (denoted as E;_1) is a linear
function of quantities known at time ¢ — 1. Clearly, the information set may contain
exogenous variables as well as lags of y;, which are all collected in the vector xy. This
makes it possible to write an equation (eq. 2) for the conditional mean of y;.

As for the conditional variance (eq. 3), this is assumed to be a known function,
with possibly also some observable exogenous variables z;. The most basic choice is the
GARCH model, in which (3) specialises to

q p
ht = w + Z oul_; + Z Bihi—j,
i—1 j=1

but a number of exotic alternatives have been devised in the past 30 years (see section
2). Note that the conditional variance, as specified in eq. (3), may or may not contain
exogenous explanatory variables, but a constant term must always be present (gig adds
one automatically otherwise). The standardised innovations ¢; are trivially defined by
eq. (4), and have zero conditional mean and unit conditional variance by construction.

= Nota bene: the convention used in the previous version of gig was to use the letter p to
indicate the ARCH order and ¢ for the GARCH order, which was inconsistent with gretl itself and,
most importantly, with Bollerslev (1986). This is now reversed, so p is the GARCH order and ¢ is
the ARCH order.

The parameters of these models are almost invariably estimated via maximum likeli-
hood (or pseudo-ML), which brings up the subject of a suitable choice for the conditional
distribution of ;. This has also been the object of much speculation, given the need to
accommodate several stylised facts, such as leptokurtosis: gig provides algorithms for
the most popular choices in the applied literature (see Table 1).

A brief remark on the skewed distributions: compared to their original parametri-
sation, we treat A as the hyperbolic tangent of an unconstrained real parameter &; this
reparametrisation is inconsequential in substance, but very helpful numerically.

1Of course, all the relevant moments are supposed to exist.
%We could be more rigorous and impress the reader with o-algebras and filtrations, but we can’t be
bothered, ok?

2 The models
2.1 The APARCH Family

Most of the models gig can handle can be thought of as special cases of the Asymmetric
Power ARCH (APARCH) model, introduced by Ding et al. (1993). This model is able
to accommodate asymmetric effects and power transformations of the variance. Its
specification for the conditional variance is the following:

q p
O‘? =W+ Z a;(Jue—i| — %utﬂ-)‘s + Z ﬁjO‘f_j (5)
i=1 j=1

where oy = v/hy, the parameter § (assumed positive, but typically ranging between 1 and
2) performs a Box-Cox transformation and = captures the asymmetric effects. Special
values of the parameters give rise to the special cases enumerated in Table 2.

The GJR model is given a special treatment in gig. Other software packages adopt
a different, albeit equivalent, parametrisation for the same model (some programs even
call it by some other name). What gig considers to be the GJR model

q p
o7 =w'z+ Y aillui| —yuw—i)® + Y Bjoi; (6)
=1 =1

is sometimes reparametrised as

q p
O'tQ = 5/zt + Z (aiuffi + ’Y’L’dt—iu?fi) + Z ﬂjat{j (7)
i=1 j=1

where d; = 1 if v < 0 and 0 otherwise. The correspondence between the two sets of
parameters is left as an exercise to the reader. An example will be given in section 3.1.

In order to facilitate comparisons, when you estimate a GJR model, gig will print
out both forms. However, only the parameters corresponding to (6) will be saved.

2.2 The EGARCH model

The Exponential GARCH (EGARCH) model, put forward by Nelson (1991), is the
only model presently available in gig that is not nested in the APARCH model. This
is because eq. (3) is written in terms of the logarithm of the variance instead of the
variance itself. Moreover, it captures asymmetric effects as a function of the standardised
innovations. The log-conditional variance In(h;) is thus given by:

q p
hy =2+ 3 [(levil = V2/7) +vieri] + Y B In(hi-) (8)
i=1 j=1

However, this is not the exact form that gig uses: there are some computational ad-
vantages in moving the term 4/2/7 out of the summation operator. The model actually

estimated is

q p
In ht = w'zt + Z (Oéi|8t,i| + ’Yigtfi) + Z ﬂj ln(ht,j) (9)
i=1 j=1

where the element of the vector w corresponding to the constant equals the corresponding
term of w minus \/2/7- >, ;.

Note that the sign of the asymmetric component in the APARCH and EGARCH
models do not match (compare equations (5) and (9)). This is rather unfortunate, since
it means that the parameter v must be given an opposite interpretation in the two cases.
However, we decided to keep the two formulations inconsistent for compatibility with
other software packages.

3 How you do things

The central idea in gig is that your model is contained in a gretl bundle?, which is set
up first with the basic information about the model (what the dependent variable is,
what kind of model it is, and so on), and then filled with all the quantities available
after estimation (coefficients etc).

Like most statistical procedures that come with gretl, there are two ways to accom-
plish the above: either you use a graphical interface, which is very intuitive and easy to
use, or you use a script, which is more awkward at the beginning, but gives you more
power and flexibility.

In this section, we will look at a few examples. We will assume that gig is installed
correctly as a gretl addon and that you already have a certain degree of familiarity with
gretl’s interface and scripting syntax.

3.1 The GUI way

Suppose you have already loaded the data you want to analyse, and have already per-
formed the necessary preliminary data transformations, if any. For example, suppose
you loaded the example gretl dataset called djclose, and already have created a variable
called 7 which contains the daily returns, that is

series y = 100 * 1diff(djclose)

If you plot g, you’ll see the typical financial time series plot, with the volatility clustering
and all the other famous “stylised facts”:

31f you don’t know what a bundle is in gretl, you may want to have a look at the User’s Guide, chapter
11. In short, a bundle is a container for assorted objects, such as matrices, series etcetera.

10

: WWWWWWWWMWWWWWWWWMMWMWW

_30 U | | | |
1980 1982 1984 1986 1988 1990

The GUI hook to gig can be found under the Model > Time Series > GARCH
variants heading. By choosing it you’ll be presented with a window similar to the one
shown in Figure 1. The meaning of the various element should be rather clear, except
perhaps for a few that require some explanation.

I gretl: GUI_gig,]

gig
Select arguments:
Dependent Variable (series) E| |a|
Model type | GARCH |v|
GARCH |1 |§|
ARCH |1 IZI
Mean regressers (list) |null E| |§|

Constant v

AR lzgs |0 D

Variznece regressers (list) |null E| |§|
Distribution | Normal |v |
Covariance estimator | Sandwich |v |
Verbosity |1 Iﬂ

v close this dialeg on "OK"

| Help | | Close |[oK l

Figure 1: GUI hook for gig

The regressors lists These are two lists holding the exogenous variables in the condi-
tional mean (x; in equation 1) and conditional variance equation (z; in equation 3),
respectively. They both default to null, an empty list, although in the variance
regressors list a constant term is automatically included if absent. If some lists
are already defined, you can pick them from the list; alternatively, you can create
lists on the fly by using the “+” button. Note that, from version 1.9.3 of gretl

onwards, you can use a single series in lieu of a list proper, so for example if you
want a constant to appear in your conditional mean, you may just type const in
the “mean regressors” text box.

Note, however, that you you have two separate GUI elements for including in your
mean specification the most common choices, that is a constant term and/or lags
of the dependent variable. Hence, you’ll need to specify the mean regressors only
if you have mean terms other than those (for example, a time trend or some other
exogenous variable).

Covariance estimator Here you can choose between 3 algorithms for computing the
variance-covariance matrix of the estimated parameters. Sandwich (also known
as QMLE: see Bollerslev and Wooldridge (1992)) is the default, but OPG is the
fastest.

Verbosity An integer, ranging from 0 to 2: the default is 1, which means you want
to see the estimated model. If you choose 0, you see nothing (all results can be
retrieved later); if you choose 2, you get to see the BFGS iterations, which may
be helpful in some cases, especially when the algorithm fails to converge (see also
section 5).

Now suppose that we want to estimate a GJR(1,1) model with a constant as mean
regressor and the ¢ distribution as the density for the standardised innovations ;. In
practice, the following model:

Y = ptu
b =Vici(w) = w+a(lu—1| — yur—1)* + Bhi—1
K(v) g2 1WA
_ = 1
f(ed| Fi1) \/E[+V—2

All you have to do is select the appropriate entries in the GUI_gig window. When
it looks like Figure 2, just press OK* and, after a second or two, the following estimate
should appear®. The asterisk at the end of the first line of the output indicates that the
analytical score was used for estimation.:

Model: GJR(1,1) [Glosten et al.] (Student’s t)*
Dependent variable: y
Sample: 1980/01/03-1989/12/29 (T = 2527), VCV method: Robust

Conditional mean equation

coefficient std. error z p-value

4Note a subtle difference between Figure 1 and Figure 2. In the latter, the “close this dialog” tick
box near the bottom is not ticked. This, of course, has no effect on the estimates, but may be quite
handy if you want to revise your model interactively.

®Note that the GJR model is presented with both parametrisations discussed in section 2.1.

gig

gretl: GUI_gig

Select arguments:

Dependent Varisble (series) |y

Model type | GJR

GARCH |1

ARCH |1

Mean regressers (list) |null

Constant

AR lzgs |0

Wariance regressors (list) |null

Distribution | t

Covariance estimater | Sandwich

Verbosity |1

close this dialeg on "OK"

| Help

| Close ||

oK

Figure 2: GUI hook for gig (GJR example)

2.833

const

0.0483897

0.0170808

Conditional variance equation

coefficient

. error

0.0249070
0.0332144
0.0259622
0.939891

. parametrization)

coefficient

0.00890124
0.00895699
0.108140
0.0155313

. error

0.0249070
0.0315122
0.00344928
0.939891

0.00890123
0.00726215
0.0149219
0.0155313

Conditional density parameters

coefficient

std. error

0.0046 *x*x
p-value
0.0051 **x
0.0002 *xx*
0.8103
0.0000 **x*
p-value
0.0051 *kx
1.43e-05 **x*
0.8172
0.0000 *x*x*

p-value

ni 5.54597 0.738486 7.510 5.92e-14 *xx*

Llik: -3408.87517 AIC: 6829.75034
BIC: 6864 .75906 HQC: 6842.45322

In fact, the estimate above will be contained in a window on top of which you get
several icons: the most interesting are

a “Save” icon Use this to save the output as text or to store the model bundle as a
gretl icon for later use.

a “Save bundle content” icon If you click here, you will see a list of all the objects
contained in the bundle holding your model. A complete list is available as Ap-
pendix B, but most names should be self-explanatory. This is where you retrieve
stuff for later processing. You also have the option (on top) of saving the whole
bundle as such, for later processing.® For example, suppose that you want to save
the standardised residuals. From the Save menu, just pick the stduhat entry. A
dialog similar to the one shown in Figure 3 should appear: just give the series any
time you want and, optionally, a description. For example, you can choose “e” as
the series name and on “Estimated standardised residuals” as the description. The
series e should now appear in your main gretl window, so you can plot it, analyse
it, save it etcetera.

a “Graph” icon By clicking here, you can choose for a plot to display: the choice is
between a “Time series” plot and a “Density” plot. For more details on the nature
of these plots, see section 4. To edit and/or save those plots, just right-click on
them.

Name of variable:

Description:

| Cancel |l 0K l

Figure 3: GUI window for saving bundle elements

3.2 Scripts: a plain-vanilla GARCH

The typical way to use gig from a script is to break the sequence of operations implicit in
the GUI call in a series of steps. This will (hopefully) help you write nice, tidy, modular
and reusable scripts.

51n fact, at this stage, the bundle will already be in the Icon View with a temporary name. Do we
want to advertise this or should we let the user discover this little trick by himself?

The two functions that you cannot avoid using are called gig_setup and gig_estimate:
the former creates a bundle with the basic info about your model, the latter populates
it with the estimates. The GUI interface merges these two actions into one, but when
you work from a script keeping the two separate has its pros.

To give you a very simple example of the way the two functions work, we will estimate
the most basic GARCH model, that is one in which equations (2) and (3) specialise to

yoo= W
hi = wHoau? |+ Bhiy

and the conditional distribution of u; is assumed to be normal, that is us|Fr—1 ~ N (0, hy).
The corresponding script reads as follows:

Import the gig library
include gig.gfn

Read the data and compute returns
open djclose
y = 100%1diff(djclose)

Estimate a plain-vanilla GARCH model
plato = gig_setup(y)
gig_estimate (&plato)

The first function we use is gig-setup: this function creates a bundle (called plato
in the present example), which contains the basic information on the model that are
needed for estimation, that is the dependent variable, the model type and the regressors
for the mean and variance equations. In this case, however, the only parameter we need
to pass to the function needs is the name of the series containing 1;. This is because
gig setup has several default options that allow you to omit some arguments in certain
cases. Since in this example the model for the conditional variance is GARCH (the
default) and there are no exogenous regressors either in the mean equation nor in the
variance equation, you may just omit the corresponding parameters. The complete list
of parameters to gig_setup can be found in the Appendix, section A.1.

Once the model is set up, we pass the address of the bundle which contains it as the
argument to the function gig estimate. This function performs the actual estimation
via maximum likelihood and (by default) prints out the results:

Model: GARCH(1,1) [Bollerslev] (Normal)x*
Dependent variable: y
Sample: 1980/01/03-1989/12/29 (T = 2527), VCV method: Robust

Conditional variance equation
coefficient std. error z p-value

omega 0.0476635 0.0332897 1.432 0.1522

alpha 0.0905285 0.0566925 1.597 0.1103

beta 0.871816 0.0674671 12.92 3.38e-38 *x*x*
Llik: -3575.27720 AIC: 7156.55440
BIC: 7174.05876 HQC: 7162.90584

Note that the main purpose of gig estimate is to run the maximum likelihood
estimation routine and store its output into the bundle whose address is given as the
function’s first argument (in this case, plato). The gig_estimate function also accepts
a second argument: a scalar which sets the verbosity of the output. Its default value
(which can be omitted, as above) is 1, which causes the estimation output to be printed
out. If set to 0, the estimation takes place silently, which can be useful at times (in a
loop, for example); on the contrary, the value 2 forces gig_estimate to print out all the
BFGS iterations. You can print out the contents of an estimated model any time after
it has been estimated, via the gig_print function.

3.3 Regressors

Here we run a model similar to the one shown in the previous example, with a few
differences. First, we assume that the conditional density for innovations is a skewed
GED, where its shape and skew parameters will have to be estimated. Moreover, we will
introduce explanatory variables for both the mean and the variance equation.

Yt = Mo+ TiYr—1 + U
hi = wo—+wivs 1 +wasi 1 +aul | + Bhiq

where v; is the log volume and s; is the log High/Low ratio.

Import the gig library
include gig.gfn

Read the data
open msft.gdt

compute returns
r = 100%1diff(Close)

compute the variance regressors
1lv = 1n(Volume/1000000)
hl = 1n(High/Low) * 100

set up the regressor lists
list X = const

list vX = const 1v(-1) hl(-1)

set up the model
socrates = gig_setup(r, 1, X, vX, 1)

10

gig_set_dist(&socrates, 4)

estimate
gig_estimate(&socrates)

In this case, we call gig_setup with 5 parameters: the dependent variable, the
model type (1, which stands for GARCH), the two lists of regressors for the mean and
the variance equation and the number of AR lags in the mean equation.

Note that in this case you could have done things a little differently with the same
effect: first, you could have included ;1 in the list X via

list X = const r(-1)

and this is indeed the way you would do things in earlier versions of gig. However,
it is advisable to follow the new syntax and specify lags of the dependent variable as
regressors separately’. Second, you could have used const instead of X in the call to
gig_setup and use the nice gretl feature of being able to use a series name as a synonym
for a one-element list, so

socrates = gig_setup(r, 1, const, vX, 1)

would have worked just as well.

The model will be contained in a bundle named socrates. The task of setting the
conditional distribution for €; is delegated to the gig_set_dist function, which takes as
parameters the address to the bundle and a numerical code identifying the density. In
this example, 4 stands for the skewed GED distribution; see Table 4, right-hand side for
the full list. The output follows:

Model: GARCH(1,1) [Bollerslev] (Skewed GED)
Dependent variable: r

Sample: 1990/01/04-2009/02/11 (T = 4817), VCV method: Robust

Conditional mean equation

coefficient std. error z p-value
const 0.0474803 0.0274078 1.732 0.0832 =*
AR1 -0.0248744 0.0141066 -1.763 0.0778 «*

Conditional variance equation

coefficient std. error z p-value
const 0.169134 0.183983 0.9193 0.3579
1v_1 -0.125632 0.0441290 -2.847 0.0044 **x
hl_1 0.425972 0.116401 3.660 0.0003 *x*x
alpha 0.0331390 0.0126196 2.626 0.0086 *x*x

"Don’t ask why.

11

beta 0.787553 0.0456421 17.25 1.03e-66 *x*x*

Conditional density parameters

coefficient std. error z p-value
ni 1.38025 0.0601761 22.94 1.99e-116 *x**
lambda 0.0330455 0.0206053 1.604 0.1088
Llik: -9964.53237 AIC: 19947.06473
BIC: 20005.38389 HQC: 19967.54332

3.4 Tweaking the model specification

In the previous subsection, we used the gig_set_dist function to record into the bundle
a piece of information (the conditional distribution) necessary for estimation. Another
similar function is gig_set_pq, which sets the GARCH and ARCH orders. In general,
however, most aspects can be set simply by setting the bundle elements to specific values
(see section B for a complete list of the bundle elements).

The reason why you’ll want to use gig set_dist and gig_set_pq is that a few ad-
justments have to be made to other bundle elements, and by using those functions you
let gig do it for you in the proper way. But in many cases all you have to do is set
the appropriate bundle element to the appropriate value. An exception to this rule is
the gig_set_vcvtype function: it provides an alternative to setting the vcvtype scalar
by using a string, which should be easier to remember. The example below should be
rather self-explanatory, but you may also want to have a look at Table 3, which provides
a quick guide to common operations.

open b-g.gdt --quiet

include gig.gfn

democritus = gig_setup(Y, 6, const)
gig_estimate(&democritus)

APARCH(1,1)
#
gig_set_pq(&democritus, 1, 2) # set q to 2
#
#

estimate

gig_set_vcvtype(&democritus, "Hessian") set vcvtype to Hessian
gig_estimate (&democritus) re-estimate

Another function that can be useful at times is gig_set_vQR: unfortunately, the lack
of analytical derivatives at this stage of development of gig makes it relatively prone
to numerical issues when exogenous variables are present in the variance equation. It is
advisable to express the variance regressors in such a way that the matrix 7! Yo 2z s
numerically well-conditioned. If you call gig_set_vQR with 1 as second parameter, gig
will will try to do it for you via a QR decomposition. In most cases we’ve tried, it seems
to work quite nicely, but this feature should be considered experimental and is disabled
by default.

12

3.5 Forecasting

As of version 2.2 (July 2016) there is now a function for simulation-based variance
forecasting named gig var _fcast. It takes 3 arguments:

1. a pointer to the bundle containing the model
2. the horizon up to which you want the forecast
3. the number of draws to use in the simulation

In practice, future values for o? will be calculated by means of equation (5);® the
future u; terms are drawn with replacement from the residuals of the model. It will
return a matrix with the simulation results (one per row) for your playing pleasure.

The same matrix can be used as the first argument to the companion function
gig vigraph, for which we defer to section 4. A brief example follows.

set echo off
set messages off
set seed 123

open b-g.gdt --quiet

include gig.gfn

heraclitus = gig_setup(Y, 1, const)
gig_estimate(&heraclitus)

scalar horizon = 390
scalar rep = 400
matrix varfore = gig_var_fcast(&heraclitus, 39, 1024)

The matrix varfore will contain 39 rows and 1024 columns with the simulation
results. If, for example, you’d like to calculate the median of the simulated variances,
all you have to do is

matrix median_vola = quantile(varfore, 0.5)

4 Plots

The gig package provides three built-in functions for plotting the results of a model:
gig plot, gig-dplot and gig vfgraph, which correspond to the “Time series”, “Den-
sity” and the “Forecast” entries of the “Plot” GUI menu (see subsection 3.1).

8No, no EGARCH yet; sorry.

13

Y: Residuals and conditional sd std residuals: kernel density vs t(4.1252)

0.4 -

0.3 -

i

\w‘ g H‘ H»,‘,,H,.‘,lm IMM "
p,il i W’ ‘HI\HV” "””"ﬂ\l l'“»'m*wllﬂ Aln W‘L

0.1 -

-3 1 1 1 1 1 1 0 1

165 494 823 1151 1480 1809 -8 -6

gig_plot example gig_dplot example

Figure 4: Example plots

The gig plot function produces a plot that is very similar to the one that gretl’s

native GARCH routine gives you after estimation, that is a time-plot of the model
residuals and the estimated conditional standard deviation.

The gig plot function, instead, compares the estimated density of the standardised

innovations to their non-parametric kernel estimate and can be used for judging visually
how adequate the choice of a conditional distribution is.

The following code fragment exemplifies of their usage in a script; the input code:

include gig.gfn

open b-g.gdt

epicurus = gig_setup(Y,7,const)
gig_set_dist(&epicurus, 1)
gig_estimate(&epicurus)
gig_plot (&epicurus)

gig_dplot (&epicurus)

produces the following output

Model: EGARCH(1,1) [Nelson] (Student’s t)
Dependent variable: Y
Sample: 1-1974 (T = 1974), VCV method: Robust

Conditional mean equation

coefficient std. error Z

const -0.000238229 0.00686306 -0.03471

14

0.9723

Conditional variance equation

coefficient std. error z p-value
omega -0.220313 0.0623767 -3.532 0.0004 *xx
alpha 0.255802 0.0624886 4.094 4.25e-05 **¥x
gamma -0.0379411 0.0181844 -2.086 0.0369 *x
beta 0.977675 0.0125505 77.90 0.0000 **x

Conditional density parameters

coefficient std. error z p-value
ni 4.12520 0.402748 10.24 1.28e-24 *x*x*
Llik: -986.08927 AIC: 1984.17853
BIC: 2017.70544 HQC: 1996.49706

and the plots shown in Figure 4.

The function gig vfgraph, instead, is a little more complex: it takes four arguments.
The first one is a matrix with the results of the simulations used to forecast the variances,
such as the one produced by the gig var_fcast function. The other two are two scalars
indicating how many observation of the in-sample fitted variants you want in the graph
and the width of the coverage region (between 0 and 1).

5 Numerical issues

5.1 gig is slow, especially EGARCH

Analytical derivatives of the likelihood for APARCH model with normal innovations were
computed by Laurent (2004). At present, however, gig relies on numerical differentiation
only for some of the models it handles®.

An important difference between equation (5) and (9) is that in the APARCH case
the conditional variance can be written as a linear filter of the u;_; variables, whereas
in the EGARCH formulation you have the e;_; variables, so the EGARCH filter is not
linear. Given the way gig is presently written (and the fact that we haven’t coded
the analytical score for EGARCH yet), this implies that EGARCH filtering is much
more time-consuming than APARCH filtering, and as a consequence estimation times
are somewhat longer. We’re working on this.

5.2 The maximisation algorithm fails to converge

All statistical models that rely on numerical optimisation methods may suffer from
convergence or accuracy problems. In case you encounter convergence problems, you

9Note to the reader: we wouldn’t feel offended if you helped with the code for the analytical score,
you know. Not in the slightest.

15

may want to try the following tricks:
e Enable the highest level of verbosity in gig_estimate() to see what goes wrong.

e Rescale your data. Estimation may be sensitive to the scale of the dependent
variable and/or your explanatory variables. There is an internal algorithm to
rescale some data “sensibly”, but is not guaranteed to work. Should you encounter
convergence problems, it is advisable to scale y; so that its variance is between 0.01
and 100. A useful thumb rule is that, for example, returns should be computed as
re = 100 - AlnPt.

e Try changing the optimisation algorithm via set 1bfgs or set optimizer newton;
see the User’s Guide for more details.

e Try starting the algorithm from a different starting point than the default. In
order to do this, you must modify the coeff element of the model bundle before
calling gig_estimate. See the example below.

include gig.gfn

open b-g.gdt --quiet

moo = gig_setup(Y, 3, const)
gig_set_pq(&moo, 2, 1)

theta_0 = moo.coeff

print theta_0

gig_estimate(&moo,2)

theta_1 = {0; 0.5; 0.2; 0; 0.7; 0.1; 2}
moo.coeff = theta_1

gig_estimate (&moo,2)

Bollerslev-Ghysels esample dataset
GJR, no regressors

set p and q (just for fun)

the automatic starting values

have a look at them

now estimate verbosely

choose another starting point
stuff it into the model

now re-estimate verbosely

H oH HF OHOH O H R

5.3 The algorithm converges but complains about a singular Hessian

All the items in the previous subsection apply. Moreover, consider that perhaps your
problem is ill-conditioned after all. Conditionally heteroskedastic model can be very
picky, especially with few datapoints. Try similar models and/or slightly different sample
ranges to see what happens.

5.4 The algorithm converges, but the maximum is outside the admissible region!

In the comfortable world of GARCH(1,1), the constraints a >0, >0 and o+ § < 1
are natural, because you want your conditional variances h; to be positive and finite
for all t. Note that each of those requirements has a slightly different reason. First,
a = 0 would make the model underidentified, so a > 0 is an absolute must. On the
other hand, the requirement o + 3 < 1 applies to the true parameters, whereas their
estimates may well violate that requirement in a finite sample. For example, the point

16

in the parameter space which maximises the likelihood may be outside the admissible
range just because your dataset ends with a massive volatility burst. A similar argument
goes for models with ¢ > 1; the second-lag ARCH parameter «s, for instance, must be
positive to ensure that h; can never be negative, but in a finite sample the sequence of
conditional variances that maximises the likelihood may include a small negative value
for ap.

Besides, a good algorithm should handle the case, which is frequent in practice, where
parameters go outside the admissible region during maximisation but eventually go back
into it because the maximum is inside that region after all.

In such a situation, surely you wouldn’t want the software to hide the problem from
you, so just printing out something like

I’m sorry, your estimates are outside the admissible region

would be a patronising decision from the software (that is, from us). In our opinion,
the best policy is to treat such results for what they are: a finite-sample oddity if your
model is right or (more likely) an indication that perhaps your model wasn’t the best
choice after all.

So, the current state of things in gig is: no constraints are put on the parameters.
In the future, we’ll issue a warning if the algorithm stops at some unorthodox point.
This is easy for a GARCH(1,1) model; for GARCH(p,q) models it’s more complex, but
still possible (Nelson and Cao, 1992).1% However, it’s not clear what to do with models
with exogenous variables in the volatility equation or non-GARCH models. We are not
aware of a generalisation of the Nelson—Cao conditions for the APARCH model; pointers
would be appreciated, if any of you know of any.

References

Bollerslev, T. and J. M. Wooldridge (1992) ‘Quasi maximum likelihood estimation and
inference in dynamic models with time varying covariances’, Econometric Review 11:
143-172.

Bollerslev, T. P. (1986) ‘Generalized autoregressive conditional heteroskedasticity’, Jour-
nal of Econometrics 31: 307-327.

Ding, Z. X., R. Engle and C. W. F. Granger (1993) ‘A long memory property of stock
markets returns and a new model’; Journal of Empirical Finance 1: 83-106.

Engle, R. (1982) ‘Autoregressive conditional heteroskedasticity with estimates of the u.k.
inflation’, Fconometrica 50: 987-1008.

Glosten, L., R. Jagannathan and D. Runkle (1993) ‘Relation between expected value
and the nominal excess return on stocks’, Journal of Finance 48: 127-138.

10 Again, a little help with the coding of the Nelson-Cao conditions would be welcome.

17

Higgins, M. and B. A. (1992) ‘A class of nonlinear arch models’, International Economic
Review 33: 137-158.

Laurent, S. (2004) ‘Analytical derivatives of the APARCH model’, Computational Eco-
nomics 24(1): 51-57.

Nelson, D. B. (1991) ‘Conditional heteroskedasticity in assets returns: a new approach’,
Econometrica 59: 347-370.

Nelson, D. B. and C. Q. Cao (1992) ‘Inequality constraints in the univariate garch model’,
Journal of Business & Economic Statistics 10(2): 229-35.

Schwert, W. (1990) ‘Stock volatility and the crash of 87’, Review of Financial Studies
3: 77-102.

Taylor, S. (1986) Modelling Financial Time Series, Wiley.

Zakoian, J. M. (1994) ‘Thresold heteroskedastic models’, Journal of Economic Dynamic
and Control 18: 931-955.

A List of functions

A.1 Model setup

gig_setup(series depVar, scalar type, list X, list varX, scalar ARlags)

1. a series containing y;, the dependent variable (required)
2. a scalar for the model type (see Table 4, left-hand side)

3. a list with the exogenous variables in the mean equation: in terms of eq. (2), the
x; variables. Lags of the dependent variable, if any, must be included in this list.
(Default: null)

4. a list with the exogenous variables in the variance equation: in terms of eq. (3),
the z; variables. A constant term is automatically included if absent. (Default:
null)

5. a scalar, holding the number of autoregressive terms in the mean equation. (De-
fault: 0)

gig set_dist(bundle *b, int code)

18

1. the address of a model bundle created via gig_setup (required)

2. a scalar for the conditional density function (see Table 4, right-hand side)

gig_set_pq(bundle *b, int p, int q)

1. the address of a model bundle created via gig_setup (required)
2. p, the GARCH order (between 0 and 2, default 1)
3. ¢, the ARCH order (minimum 1, default 1)

gig_set_vcvtype(bundle *b, string s)

1. the address of a model bundle created via gig_setup (required)
2. a string: “Hessian”, “OPG” or “Sandwich”; (required). Note that

(a) the function is case-insensitive, so “opg” and “OPG” produce the same effect;

(b) other strings than the ones listed above produce no effect.

gig_set_vQR(bundle *b, boolean on_off)

1. the address of a model bundle created via gig_setup (required)

2. 1 to activate the QR decomposition for variance regressors, 0 to de-activate

A.2 Estimation

gig estimate(bundle *b, int verbose[0:2:1])

General estimation function. Its arguments are:

1. the address of a model bundle created via gig_setup (required)

2. a verbosity switch, from 0 to 2. (Default: 1)

19

A.3 Output

Note: these functions assume that the bundle they refer to contain a model that has
already been estimated. No checks is performed.

gig print(bundle *b, scalar verbose)

Prints out a model.

gig plot(bundle *b)

Plots the residuals/conditional SE graph.

gig_dplot(bundle *b)

Plots the estimated density of the standardized residuals versus its nonparametric
estimate.

20

Name Density Parameters
Normal ﬁ exp {7% none
S ’ K() ez |0/
tudent’s ¢ X (14 5] v>2
Generalised Error Distribu- C(v)exp {f o V} v>0
tion (GED)
Skewed ¢ L\/’%) [1 n Dgi] —(v+1)/2 > 2EER
D)exp{-PBilet —m|'} e <m
Skewed GED { D(v)exp {—falee — m'} e >m v>0,&eRn
r 1)/2
k) - Ll
(v —2)'(v/2)
v [T'(3/v
cwy = v 1B
2\/ T(1/v)
I(1
o [yt
I'(3/v)
v—2
= K 4\
a (v) <1/ — 1>
b = V1+3)\2—a?
A = tanh(¢)
6 = berta for gy < —afb
! bii&“ for e, > —a/b
1 r3/v) [1+A\°)
D = — (2AI'(2
) I‘(l/u)\/2-F(1/l/) <1—/\> (2A02/v))

Table 1: Conditional densities for e;

21

MODEL AUTHOR CONSTRAINTS

ARCH Engle (1982) 0=2,v=0fori=1,...,q and
Bj=0forj=1,...,p

GARCH Bollerslev (1986) 0=2,v=0i=1,...,q

Taylor/Schwert Taylor (1986) and Schwert d=1,v=0i=1,...,q

GARCH (1990)

GJR Glosten et al. (1993) d=2

TARCH Zakoian (1994) 5=1

NARCH Higgins and A. (1992) v% =0fori=1,...,pand B; =0
forj=1,...,p

Table 2: APARCH nested sub-models

It you want to...

You have to...

Change the type of an existing
model

Change the dependent variable
of an existing model

Change the regressors for an
existing model

Change the AR order for an ex-
isting model

Re-estimate an existing model
on a different sample

Change the density for an ex-
isting model

Change the orders of the poly-
nomials for an existing model
Change the way the covariance
matrix is computed

Change the initial values for
BFGS

Toggle QR decomposition for
variance regressors

Change the verbosity of BFGS

You can’t. Re-create the bundle with gig_setup
You can’t. Re-create the bundle with gig_setup
You can’t. Re-create the bundle with gig_setup
You can’t. Re-create the bundle with gig_setup
You can’t. Run the appropriate smpl command first
and then re-create the bundle with gig_setup

Use gig_set_dist with the appropriate density code
Use gig_set_pq

Set the bundle element vcvtype to 0, 1 or 2, or use

gig_set_vcvtype

Set the bundle element inipar to your liking; be sure
you know what you're doing

Use gig_set_vQR

You can’t change it permanently: it’s the second pa-
rameter to gig_estimate

Table 3: Tweaking models

22

Code Model Type Code Density Type
0 ARCH 0 Normal (default)
1 GARCH (default) 1 Student’s ¢
2 Taylor/Schwert GARCH 2 GED
3 GJR 3 Skewed ¢
4 Zakoian’s TARCH 4 Skewed GED
5 NARCH
6 APARCH
7 EGARCH

Table 4: Model type/density function codes

23

B Bundle elements

Name Type Purpose

Model descriptors

type scalar model type (as per Table 4)
AR scalar AR order (mean equation)
p scalar ~ GARCH order
q scalar ARCH order
cdist scalar conditional density (as per Table 4)
mlistX matrix list of mean regressors
vlistX matrix list of variance regressors
mk scalar number of mean regressors
vk scalar number of variance regressors
nobs scalar number of observations
tl scalar first observation used

t2 scalar last observation used

Strings

depvarname string dependent variable name
mXnames string mean regressors names

vXnames string variance regressors names

Data

y series dependent variable
mX matrix mean regressors
vX matrix variance regressors

s2 scalar sample variance of the OLS residuals of y on X

Estimation parameters

scale scalar auto-scaling (used internally)
vevtype scalar method for computing the covariance matrix: 0 = Sandwich (default), 1
= Hessian, 2 = OPG
inipar matrix Starting values for BFGS

active matrix indicates which elements of the parameter vector are active during ML
estimation

vX_-QR scalar Toggles QR decomposition for variance regressors

Estimation results

errcode scalar error code from BFGS (0 = ok)
coeff matrix coeflicients
stderr matrix std. deviations

vev matrix covariance matrix

uhat series residuals
h series conditional variance
stduhat series standardised residuals

criteria matrix information criteria

24

NOTA BENE: For APARCH models, the order in which the estimated parameters
are stored in the coeff matrix is the following:

1.

2.

Conditional mean parameters

wp - . . Wk, where k is the number of variance regressors; the constant in equation
(5) is here.

RS IR %71

. M -..7 if the model contains “leverage” terms (otherwise, eg with the plain

GARCH model, you have zeros here)

Bi... By

. parameters for the conditional density: for example, degrees of freedom v for

Student’s t.

25

