
logging: structured logging for gretl

Artur Tarassow

July 8, 2021

1 Introduction

This addon provides structured logging for gretl; that is, a means of recording the history and
progress of a computation as a log of events.

There are in principle two roles involved in logging—the coder (the writer of a hansl script or
function package) and the user (the person running the script or package)—although one person
may play both roles.

The coder gets to decide which events will be logged, and the importance or “level” to be assigned to
each event. This is done by means of the logging functions Debug, Info, Warn, Error and Critical
(in increasing order of importance). Each of these functions requires a single string argument and
offers no return value. For example, the signature of Info is

void Info (const string msg)

The coder must include the following statement prior to calling these functions:

include logging.gfn

The user determines which log messages will be shown, by selecting a threshold: print only mes-
sages of a specified level or above. This is done via the command

set loglevel <level>

where <level> can be given by number or name, as shown below.

number name associated function

0 debug Debug

1 info Info

2 warn Warn

3 error Error

4 critical Critical

The default level is 2 or warn, so messages set via the Debug and Info functions will not be printed
unless the user specifies a lower threshold. A user who does not care to see warning messages can
raise the threshold to 3 or error.

2 Remarks

Using structured logging provides some advantages over using print or printf statements:

1

1. It gives control over the visibility and presentation of messages without editing the source
code. For example, the code

Debug("This is a debugging message")

will produce no output by default; such messages are printed only if the user selects a verbose
level of logging.

2. It’s cheap to leave debugging statements like this in the source code: the program evaluates
the message only if it is currently called for.

3. Log messages can have timestamps, and can be written to a separate file which can be analysed
afterwards. More on these points below.

Note that the message passed to a logging function does not have to a fixed piece of text. You can
incorporate current state information by means of the sprintf function, as in this example

Warn(sprintf("The matrix X looks funny:\n%12g\n", X))

which prints the elements of X following the message.

The table below may be helpful in determining which level of logging to use for which purpose.1

Debug Detailed information, typically of interest only when diagnosing problems.

Info Confirmation that things are working as expected.

Warn An indication that something unexpected happened, or indicative of some prob-
lem in the near future (e.g. “disk space low”). The software is still working as
expected.

Error Due to a more serious problem, the software has not been able to perform some
function.

Critical A serious error, indicating that the program itself may be unable to continue
running.

3 Timestamps

Optionally, the user can arrange for each logging message to show a timestamp. This is achieved
via the command

set logstamp on

And timestamps can be turned off via “set logstamp off”.

Suppose a function contains the following statement, triggered when an argument x is negative:

Warn("x is negative")

Without a timestamp the output will be

WARNING: x is negative

With a timestamp it will resemble the following, showing date, time and time-zone:

WARNING 2021-07-08 10:26:44 EDT: x is negative

1It is borrowed from https://docs.python.org/3/howto/logging.html.

2

https://docs.python.org/3/howto/logging.html

4 Logging to file

By default log messages are printed to the same place (window, file, or whatever) as regular program
output. But the set variable logfile can be used to redirect logging output. For example, if you
specify

set logfile "mylog.txt"

logging output will go mylog.txt. Note that when a simple filename is given, as above, the file will
be written in the user’s working directory. To take control over its location you can supply a full
path. You can also specify the “file” as stdout or stderr (without quotes) to send logging to the
standard output or standard error streams, respectively.

5 A simple example

Listing 1 illustrates usage on the part of both coder (in the function testlog) and user. You can
try uncommenting the “set” lines in the main script to see their effect.

include logging.gfn

function void testlog (scalar x)
Debug("Here in function testlog")
Info(sprintf("testlog: x = %g", x))
if missing(x)

Error("x value is invalid")
elif x < 0

Warn("x is negative")
endif

end function

/* main script */

set loglevel info
set logstamp on
set loglevel debug
testlog(3)
testlog(-1)
testlog(NA)

Listing 1: Sample usage of logging functionality

6 Accessors

The settings of loglevel, logstamp and logfile can be accessed via $loglevel, $logstamp
and $logfile, respectively. The first two accessors return a numerical value (0/1 for logstamp);
$logfile returns an empty string if redirection is not set. However, these accessors are basically
internals of the addon, unlikely to be of interest to its users.

7 Changelog

2021-07-08 Initial version.

3

	1 Introduction
	2 Remarks
	3 Timestamps
	4 Logging to file
	5 A simple example
	6 Accessors
	7 Changelog

