
Gretl Command Reference

Gnu Regression, Econometrics and Time-series Library

Allin Cottrell
Department of Economics

Wake Forest University

Riccardo “Jack” Lucchetti
Dipartimento di Economia

Università Politecnica delle Marche

December, 2024

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation (see http://www.gnu.org/licenses/fdl.html).

http://www.gnu.org/licenses/fdl.html

Contents

1 Gretl commands 1

1.1 Introduction . 1

1.2 Commands . 1

add . 1

adf . 2

anova . 4

append . 5

ar . 6

ar1 . 6

arch . 6

arima . 7

arma . 9

bds . 9

biprobit . 10

bkw . 10

boxplot . 11

break . 11

catch . 11

chow . 12

clear . 12

coeffsum . 13

coint . 13

continue . 13

corr . 14

corrgm . 15

cusum . 15

data . 16

dataset . 17

delete . 19

diff . 19

difftest . 20

discrete . 20

dpanel . 21

i

Contents ii

dummify . 22

duration . 22

elif . 23

else . 23

end . 23

endif . 23

endloop . 23

eqnprint . 23

equation . 24

estimate . 24

eval . 25

fcast . 25

flush . 27

foreign . 27

fractint . 28

freq . 28

funcerr . 29

function . 29

garch . 29

genr . 30

gmm . 32

gnuplot . 34

graphpg . 38

gridplot . 39

gpbuild . 39

heckit . 40

help . 41

hfplot . 41

hsk . 41

hurst . 41

if . 42

include . 43

info . 43

intreg . 43

johansen . 44

join . 45

kdplot . 46

kpss . 46

labels . 47

Contents iii

lad . 47

lags . 48

ldiff . 48

leverage . 48

levinlin . 50

logistic . 50

logit . 51

logs . 52

loop . 52

mahal . 53

makepkg . 53

markers . 54

meantest . 54

midasreg . 55

mle . 56

modeltab . 58

modprint . 59

modtest . 59

mpi . 60

mpols . 60

negbin . 61

nls . 61

normtest . 63

nulldata . 63

ols . 63

omit . 64

open . 65

orthdev . 67

outfile . 67

panel . 70

panplot . 71

panspec . 71

pca . 72

pergm . 72

pkg . 73

plot . 74

poisson . 75

print . 76

printf . 77

Contents iv

probit . 78

pvalue . 79

qlrtest . 80

qqplot . 80

quantreg . 81

quit . 81

rename . 82

reset . 82

restrict . 83

rmplot . 85

run . 85

runs . 86

scatters . 86

sdiff . 86

set . 87

setinfo . 92

setmiss . 93

setobs . 93

setopt . 95

shell . 95

smpl . 96

spearman . 98

square . 98

stdize . 99

store . 99

summary . 101

system . 101

tabprint . 103

textplot . 103

tobit . 104

tsls . 104

tsplots . 106

var . 106

varlist . 107

vartest . 107

vecm . 108

vif . 109

wls . 109

xcorrgm . 110

Contents v

xtab . 110

1.3 Commands by topic . 111

Estimation . 111

Tests . 112

Transformations . 112

Statistics . 112

Dataset . 112

Graphs . 113

Printing . 113

Prediction . 113

Programming . 113

Utilities . 113

1.4 Short-form command options . 114

2 Gretl functions 115

2.1 Introduction . 115

2.2 Accessors . 115

$ahat . 115

$aic . 115

$allprobs . 115

$bic . 115

$chisq . 115

$coeff . 116

$command . 116

$compan . 116

$datatype . 116

$depvar . 116

$df . 116

$diagpval . 117

$diagtest . 117

$dotdir . 117

$dw . 117

$dwpval . 117

$ec . 117

$error . 117

$ess . 118

$evals . 118

$fcast . 118

$fcse . 118

Contents vi

$fevd . 118

$Fstat . 118

$gmmcrit . 119

$h . 119

$hausman . 119

$hqc . 119

$huge . 119

$jalpha . 119

$jbeta . 119

$jvbeta . 119

$lang . 120

$llt . 120

$lnl . 120

$macheps . 121

$mapfile . 121

$mnlprobs . 121

$model . 121

$mpirank . 121

$mpisize . 121

$ncoeff . 121

$nobs . 122

$now . 122

$nvars . 122

$obsdate . 122

$obsmajor . 122

$obsmicro . 122

$obsminor . 123

$panelpd . 123

$parnames . 123

$pd . 123

$pi . 123

$pkgdir . 123

$pvalue . 124

$qlrbreak . 124

$result . 124

$rho . 124

$rsq . 124

$sample . 124

$sargan . 125

Contents vii

$seed . 125

$sigma . 125

$stderr . 125

$stopwatch . 125

$sysA . 126

$sysB . 126

$sysGamma . 126

$sysinfo . 126

$system . 127

$T . 127

$t1 . 128

$t2 . 128

$test . 128

$time . 128

$tmax . 128

$trsq . 128

$uhat . 129

$unit . 129

$vcv . 129

$vecGamma . 129

$version . 129

$vma . 129

$windows . 130

$workdir . 130

$xlist . 130

$xtxinv . 130

$yhat . 130

$ylist . 130

2.3 Built-in strings . 130

$dotdir . 130

$gnuplot . 131

$gretldir . 131

$tramo . 131

$tramodir . 131

$x12a . 131

$x12adir . 131

2.4 Functions proper . 131

abs . 131

acos . 131

Contents viii

acosh . 132

aggregate . 132

argname . 133

array . 133

asin . 134

asinh . 134

asort . 134

assert . 135

atan . 135

atan2 . 135

atanh . 136

atof . 136

bcheck . 136

bessel . 137

BFGSmax . 138

BFGSmin . 138

BFGScmax . 138

BFGScmin . 139

bin2dec . 139

bincoeff . 139

binperms . 140

bkfilt . 140

bkw . 141

boxcox . 141

bread . 141

brename . 142

bwfilt . 142

bwrite . 143

carg . 143

cdemean . 143

cdf . 143

cdiv . 144

cdummify . 144

ceil . 145

cholesky . 145

chowlin . 145

cmod . 145

cmult . 146

cnorm . 146

Contents ix

cnumber . 146

cnameget . 146

cnameset . 147

cols . 147

commute . 147

complex . 148

conj . 148

contains . 148

conv2d . 149

cquad . 149

corr . 149

corresp . 149

corrgm . 150

cos . 150

cosh . 150

cov . 151

critical . 151

cswitch . 151

ctrans . 152

cum . 152

curl . 152

dayspan . 153

dec2bin . 153

defarray . 154

defbundle . 154

deflist . 155

deseas . 155

det . 157

diag . 157

diagcat . 157

diff . 157

digamma . 157

distance . 157

dnorm . 159

dropcoll . 159

dsort . 160

dummify . 160

easterday . 160

ecdf . 161

Contents x

eigen . 161

eigengen . 161

eigensym . 162

eigsolve . 162

epochday . 162

errmsg . 163

errorif . 163

exists . 163

exp . 163

fcstats . 164

fdjac . 164

feval . 165

fevalb . 165

fevd . 166

fft . 167

ffti . 167

filter . 167

firstobs . 168

fixname . 168

flatten . 169

floor . 170

fracdiff . 170

fzero . 170

gammafun . 171

genseries . 171

geoplot . 172

getenv . 172

getinfo . 172

getkeys . 173

getline . 173

ghk . 173

gini . 174

ginv . 174

GSSmax . 175

GSSmin . 175

halton . 176

hdprod . 176

hfdiff . 177

hfldiff . 177

Contents xi

hflags . 177

hflist . 177

hpfilt . 178

hyp2f1 . 178

I . 178

Im . 178

imaxc . 179

imaxr . 179

imhof . 179

iminc . 179

iminr . 179

inbundle . 180

infnorm . 180

inlist . 180

instring . 180

instrings . 181

int . 181

interpol . 182

inv . 182

invcdf . 182

invmills . 183

invpd . 183

irf . 183

irr . 184

iscomplex . 184

isconst . 184

isdiscrete . 185

isdummy . 185

isnan . 185

isoconv . 185

isocountry . 185

isodate . 186

isoweek . 187

iwishart . 187

jsonget . 187

jsongetb . 188

juldate . 188

kdensity . 189

kdsmooth . 189

Contents xii

kfilter . 190

kmeier . 190

kpsscrit . 190

ksetup . 190

ksimul . 191

ksmooth . 191

kurtosis . 191

lags . 192

lastobs . 192

ldet . 192

ldiff . 192

lincomb . 193

linearize . 193

ljungbox . 193

lngamma . 193

loess . 193

log . 194

log10 . 194

log2 . 194

logistic . 194

lpsolve . 194

lower . 195

lrcovar . 195

lrvar . 195

Lsolve . 195

mat2list . 196

max . 196

maxc . 197

maxr . 197

mcorr . 197

mcov . 197

mcovg . 198

mean . 199

meanc . 199

meanr . 200

median . 200

mexp . 200

mgradient . 201

midasmult . 201

Contents xiii

min . 202

minc . 202

minr . 202

missing . 202

misszero . 203

mlag . 203

mlincomb . 204

mlog . 204

mnormal . 204

mols . 205

monthlen . 205

movavg . 205

mpiallred . 206

mpibarrier . 206

mpibcast . 206

mpirecv . 207

mpireduce . 207

mpiscatter . 207

mpisend . 208

mpols . 208

mrandgen . 208

mread . 209

mreverse . 210

mrls . 210

mshape . 210

msortby . 211

msplitby . 211

muniform . 212

mweights . 212

mwrite . 213

mxtab . 213

naalen . 214

nadarwat . 214

nelem . 215

ngetenv . 215

nlines . 215

NMmax . 215

NMmin . 216

nobs . 216

Contents xiv

normal . 216

normtest . 216

npcorr . 217

npv . 217

NRmax . 217

NRmin . 218

nullspace . 218

numhess . 219

obs . 219

obslabel . 219

obsnum . 220

ok . 220

onenorm . 220

ones . 220

orthdev . 221

pdf . 221

pergm . 221

pexpand . 221

pmax . 222

pmean . 222

pmin . 222

pnobs . 222

polroots . 223

polyfit . 223

princomp . 223

prodc . 224

prodr . 224

psd . 224

psdroot . 224

pshrink . 225

psum . 225

pvalue . 225

pxnobs . 226

pxsum . 226

qform . 226

qlrpval . 227

qnorm . 227

qrdecomp . 227

quadtable . 227

Contents xv

quantile . 228

randgen . 229

randgen1 . 230

randint . 230

randperm . 230

randstr . 231

rank . 231

ranking . 231

rcond . 232

Re . 232

readfile . 232

regsub . 233

remove . 233

replace . 233

resample . 234

rgbmix . 234

round . 235

rnameget . 235

rnameset . 236

rows . 236

schur . 236

sd . 236

sdc . 237

sdiff . 237

seasonals . 237

selifc . 238

selifr . 238

seq . 238

setnote . 238

sgn . 238

simann . 239

sin . 239

sinh . 239

skewness . 239

sleep . 239

smplspan . 240

sort . 240

sortby . 240

sphericorr . 241

Contents xvi

sprintf . 241

sqrt . 242

square . 242

sscanf . 242

sst . 243

stack . 244

stdize . 244

strfday . 244

strftime . 244

stringify . 245

strlen . 245

strncmp . 246

strpday . 246

strptime . 246

strsplit . 247

strstr . 248

strstrip . 248

strsub . 248

strvals . 249

strvsort . 249

substr . 249

sum . 250

sumall . 250

sumc . 251

sumr . 251

svd . 251

svm . 251

tan . 252

tanh . 252

tdisagg . 252

toepsolv . 252

tolower . 253

toupper . 254

tr . 254

transp . 254

trigamma . 254

trimr . 254

typename . 254

typeof . 255

Contents xvii

typestr . 255

uniform . 255

uniq . 256

unvech . 256

upper . 256

urcpval . 257

values . 257

var . 257

varname . 257

varnames . 258

varnum . 258

varsimul . 258

vec . 258

vech . 259

vma . 259

weekday . 259

wmean . 260

wsd . 260

wvar . 260

xmlget . 261

zeromiss . 261

zeros . 261

3 Operators 262

3.1 Precedence . 262

3.2 Assignment . 263

3.3 Increment and decrement . 264

4 Comments in scripts 265

5 Options, arguments and path-searching 267

5.1 Invoking gretl . 267

5.2 Preferences dialog . 267

5.3 Invoking gretlcli . 268

5.4 Path searching . 268

MS Windows . 269

6 Reserved Words 270

Bibliography 272

Chapter 1

Gretl commands

1.1 Introduction

The commands defined below may be executed interactively in the command-line client program
or in the console window of the GUI program. They may also be placed in a “script” or batch file
for non-interactive execution.

The following notational conventions are used below:

• A typewriter font is used for material that you would type directly, and also for internal
names of variables.

• Terms in a slanted font are place-holders: you should substitute some specific replacement.
For example, you might type income in place of the generic xvar.

• The construction [arg] means that the argument arg is optional: you may supply it or not
(but in any case don’t type the brackets).

• The phrase “estimation command” means a command that generates estimates for a given
model, for example ols, ar or wls.

In general, each line of a command script should contain one and only one complete gretl command.
There are, however, two means of continuing a long command from one line of input to another.
First, if the last non-space character on a line is a backslash, this is taken as an indication that the
command is continued on the following line. In addition, if the comma is a valid character in a
given command (for instance, as a separator between function arguments, or as punctuation in the
command printf) then a trailing comma also indicates continuation. To emphasize the point: a
backslash may be inserted “arbitrarily” to indicate continuation, but a comma works in this capacity
only if it is syntactically valid as part of the command.

1.2 Commands

add

Argument: varlist

Options: --lm (do an LM test, OLS only)

--quiet (print only the basic test result)

--silent (don’t print anything)

--vcv (print covariance matrix for augmented model)

--both (IV estimation only, see below)

Examples: add 5 7 9

add xx yy zz --quiet

Must be invoked after an estimation command. Performs a joint test for the addition of the speci-
fied variables to the last model, the results of which may be retrieved using the accessors $test and
$pvalue.

1

Chapter 1. Gretl commands 2

By default an augmented version of the original model is estimated, including the variables in
varlist. The test is a Wald test on the augmented model, which replaces the original as the “current
model” for the purposes of, for example, retrieving the residuals as $uhat or doing further tests.

Alternatively, given the --lm option (available only for the models estimated via OLS), an LM test is
performed. An auxiliary regression is run in which the dependent variable is the residual from the
last model and the independent variables are those from the last model plus varlist. Under the null
hypothesis that the added variables have no additional explanatory power, the sample size times
the unadjusted R-squared from this regression is distributed as chi-square with degrees of freedom
equal to the number of added regressors. In this case the original model is not replaced.

The --both option is specific to two-stage least squares: it specifies that the new variables should
be added both to the list of regressors and the list of instruments, the default in this case being to
add to the regressors only.

Menu path: Model window, /Tests/Add variables

adf

Arguments: order varlist

Options: --nc (test without a constant)

--c (with constant only)

--ct (with constant and trend)

--ctt (with constant, trend and trend squared)

--seasonals (include seasonal dummy variables)

--gls (de-mean or de-trend using GLS)

--verbose (print regression results)

--quiet (suppress printing of results)

--difference (use first difference of variable)

--test-down[=criterion] (automatic lag order)

--perron-qu (see below)

Examples: adf 0 y

adf 2 y --nc --c --ct

adf 12 y --c --test-down

See also jgm-1996.inp

The options shown above and the discussion which follows mostly pertain to the use of the adf
command with regular time series data. For use of this command with panel data please see the
section titled “Panel data” below.

This command computes a set of Dickey–Fuller tests on each of the listed variables, the null hy-
pothesis being that the variable in question has a unit root. (But if the --difference flag is given,
the first difference of the variable is taken prior to testing, and the discussion below must be taken
as referring to the transformed variable.)

By default, two variants of the test are shown: one based on a regression containing a constant and
one using a constant and linear trend. You can control the variants that are presented by specifying
one or more of the option flags --nc, --c, --ct, --ctt.

The --gls option can be used in conjunction with one or other of the flags --c and --ct. The effect
of this option is that the series to be tested is demeaned or detrended using the GLS procedure
proposed by Elliott et al. (1996), which gives a test of greater power than the standard Dickey–
Fuller approach. This option is not compatible with --nc, --ctt or --seasonals.

In all cases the dependent variable in the test regression is the first difference of the specified
series, y , and the key independent variable is the first lag of y . The regression is constructed such
that the coefficient on lagged y equals the root in question, α, minus 1. For example, the model

Chapter 1. Gretl commands 3

with a constant may be written as

(1− L)yt = β0 + (α− 1)yt−1 + ϵt

Under the null hypothesis of a unit root the coefficient on lagged y equals zero. Under the alterna-
tive that y is stationary this coefficient is negative. So the test is inherently one-sided.

Selecting the lag order

The simplest version of the Dickey–Fuller test assumes that the error term in the test regression
is serially uncorrelated. In practice this is unlikely to be the case and the specification is often
extended by including one or more lags of the dependent variable, giving an Augmented Dickey–
Fuller (ADF) test. The order argument governs the number of such lags, k, possibly depending on
the sample size, T .

• For a fixed, user-specified k: give a non-negative value for order.

• For T -dependent k: give order as −1. The order is then set following the recommendation of
Schwert (1989), namely the integer part of 12(T/100)0.25.

In general, however, we don’t know how many lags will be required to “whiten” the Dickey–Fuller
residual. It’s therefore common to specify the maximum value of k and let the data decide the
actual number of lags to include. This can be done via the --test-down option. The criterion for
selecting optimal k may be set using the parameter to this option, which should be one of AIC, BIC
or tstat, AIC being the default.

When testing down via AIC or BIC, the final lag order for the ADF equation is that which optimizes
the chosen information criterion (Akaike or Schwarz Bayesian). The exact procedure depends on
whether or not the --gls option is given. When GLS is specified, AIC and BIC are the “modified”
versions described in Ng and Perron (2001), otherwise they are the standard versions. In the GLS
case a refinement is available. If the additional option --perron-qu is given, lag-order selection is
performed via the revised method recommended by Perron and Qu (2007). In this case the data are
first demeaned or detrended via OLS; GLS is applied once the lag order is determined.

When testing down via the t-statistic method is called for, the procedure is as follows:

1. Estimate the Dickey–Fuller regression with k lags of the dependent variable.

2. Is the last lag significant? If so, execute the test with lag order k. Otherwise, let k = k − 1; if k
equals 0, execute the test with lag order 0, else go to step 1.

In the context of step 2 above, “significant” means that the t-statistic for the last lag has an asymp-
totic two-sided p-value, against the normal distribution, of 0.10 or less.

To sum up, if we accept the various arguments of Perron, Ng, Qu and Schwert referenced above,
the favored command for testing a series y is likely to be:

adf -1 y --c --gls --test-down --perron-qu

(Or substitute --ct for --c if the series seems to display a trend.) The lag order for the test
will then be determined by testing down via modified AIC from the Schwert maximum, with the
Perron–Qu refinement.

P-values for the Dickey–Fuller tests are based on response-surface estimates. When GLS is not
applied these are taken from MacKinnon (1996). Otherwise they are taken from Cottrell (2015)
or, when testing down is performed, Sephton (2021). The P-values are specific to the sample size
unless they are labeled as asymptotic.

Chapter 1. Gretl commands 4

Panel data

When the adf command is used with panel data, to produce a panel unit root test, the applicable
options and the results shown are somewhat different.

First, while you may give a list of variables for testing in the regular time-series case, with panel
data only one variable may be tested per command. Second, the options governing the inclusion of
deterministic terms become mutually exclusive: you must choose between no-constant, constant
only, and constant plus trend; the default is constant only. In addition, the --seasonals option is
not available. Third, the --verbose option has a different meaning: it produces a brief account of
the test for each individual time series (the default being to show only the overall result).

The overall test (null hypothesis: the series in question has a unit root for all the panel units)
is calculated in one or both of two ways: using the method of Im et al. (2003) or that of Choi
(2001). The Choi test requires that P-values are available for the individual tests; if this is not the
case (depending on the options selected) it is omitted. The particular statistic given for the Im,
Pesaran, Shin test varies as follows: if the lag order for the test is non-zero their W statistic is
shown; otherwise if the time-series lengths differ by individual, their Z statistic; otherwise their
t-bar statistic. See also the levinlin command.

Menu path: /Variable/Unit root tests/Augmented Dickey-Fuller test

anova

Arguments: response treatment [block]

Option: --quiet (don’t print results)

Analysis of Variance: response is a series measuring some effect of interest and treatment must be
a discrete variable that codes for two or more types of treatment (or non-treatment). For two-way
ANOVA, the block variable (which should also be discrete) codes for the values of some control
variable.

Unless the --quiet option is given, this command prints a table showing the sums of squares and
mean squares along with an F -test. The F -test and its p-value can be retrieved using the accessors
$test and $pvalue respectively.

The null hypothesis for the F -test is that the mean response is invariant with respect to the treat-
ment type, or in words that the treatment has no effect. Strictly speaking, the test is valid only if
the variance of the response is the same for all treatment types.

Note that the results shown by this command are in fact a subset of the information given by the
following procedure, which is easily implemented in gretl. Create a set of dummy variables coding
for all but one of the treatment types. For two-way ANOVA, in addition create a set of dummies
coding for all but one of the “blocks”. Then regress response on a constant and the dummies using
ols. For a one-way design the ANOVA table is printed via the --anova option to ols. In the two-
way case the relevant F -test is found by using the omit command. For example (assuming y is the
response, xt codes for the treatment, and xb codes for blocks):

one-way
list dxt = dummify(xt)
ols y 0 dxt --anova
two-way
list dxb = dummify(xb)
ols y 0 dxt dxb
test joint significance of dxt
omit dxt --quiet

Menu path: /Model/Other linear models/ANOVA

Chapter 1. Gretl commands 5

append

Argument: filename

Options: --time-series (see below)

--fixed-sample (see below)

--update-overlap (see below)

--quiet (print less confirmation details, see below)

See below for additional specialized options

Opens a data file and appends the content to the current dataset, if the new data are compatible.
The program will try to detect the format of the data file (native, plain text, CSV, Gnumeric, Excel,
etc.). Please note that the join command offers much more control over the matching of supple-
mentary data to the current dataset. Also note that appending data to an existing panel dataset is
potentially quite tricky; see the section headed “Panel data” below.

The appended data may take the form of either additional observations on series already present
in the dataset, and/or new series. In the case of adding series, compatibility requires either (a) that
the number of observations for the new data equals that for the current data, or (b) that the new
data carries clear observation information so that gretl can work out how to place the values. Note
that if there’s a “perfect match” of observation information (that is, conditions (a) and (b) are both
satisfied), it is assumed that series, rather than observations, are to be added. And if it happens
that there are no series names in the file whose data are to be appended that are not already present
in the current dataset then nothing is done, and a warning is shown.

One case that is not supported is where the new data start earlier and also end later than the
original data. To add new series in such a case you can use the --fixed-sample option; this
has the effect of suppressing the adding of observations, and so restricting the operation to the
addition of new series.

When a data file is selected for appending, there may be an area of overlap with the existing dataset;
that is, one or more series may have one or more observations in common across the two sources.
If the option --update-overlap is given, the append operation will replace any overlapping obser-
vations with the values from the selected data file, otherwise the values currently in place will be
unaffected.

The additional specialized options --sheet, --coloffset, --rowoffset and --fixed-cols work
in the same way as with open; see that command for explanations.

By default some information about the appended dataset is printed. The --quiet option reduces
that printout to a confirmatory message stating just the path to the file. If you want the operation
to be completely silent, then issue the command set verbose off before appending the data, in
combination with the --quiet option.

Panel data

When new data are appended to a panel dataset, the result will be correct only if both the “units”
or “individuals” and the time-periods are properly matched.

Two relatively simple cases should be handled correctly by append. Let n denote the number of
cross-sectional units and T denote the number of time periods in the current panel, and let m
denote the number of observations for the new data. If m = n the new data are taken to be time-
invariant, and are copied into place for each time period. On the other hand, if m = T the data
are treated as invariant across the panel units, and are copied into place for each unit. If T = n
an ambiguity arises. In that case the new data are treated as time-invariant by default, but you can
force gretl to treat them as time series (invariant across the units) via the --time-series option.

If both the current dataset and the incoming data are recognized as panel data two cases arise. (1)
The time-series length, T , differs between the two. Then an error is flagged. (2) T matches. Then a
very simple assumption is made, namely that the units match up, starting with the first unit in both

Chapter 1. Gretl commands 6

datasets. If that assumption is not correct you must use join instead of append.

Menu path: /File/Append data

ar

Arguments: lags ; depvar indepvars

Options: --vcv (print covariance matrix)

--quiet (don’t print parameter estimates)

Example: ar 1 3 4 ; y 0 x1 x2 x3

Computes parameter estimates using the generalized Cochrane–Orcutt iterative procedure; see Sec-
tion 9.5 of Ramanathan (2002). Iteration is terminated when successive error sums of squares do
not differ by more than 0.005 percent or after 20 iterations.

lags is a list of lags in the residuals, terminated by a semicolon. In the above example, the error
term is specified as

ut = ρ1ut−1 + ρ3ut−3 + ρ4ut−4 + et

Menu path: /Model/Univariate time series/AR Errors (GLS)

ar1

Arguments: depvar indepvars

Options: --hilu (use Hildreth–Lu procedure)

--pwe (use Prais–Winsten estimator)

--vcv (print covariance matrix)

--no-corc (do not fine-tune results with Cochrane-Orcutt)

--loose (use looser convergence criterion)

--quiet (don’t print anything)

Examples: ar1 1 0 2 4 6 7

ar1 y 0 xlist --pwe

ar1 y 0 xlist --hilu --no-corc

Computes feasible GLS estimates for a model in which the error term is assumed to follow a first-
order autoregressive process.

The default method is the Cochrane–Orcutt iterative procedure; see for example section 9.4 of Ra-
manathan (2002). The criterion for convergence is that successive estimates of the autocorrelation
coefficient do not differ by more than 1e-6, or if the --loose option is given, by more than 0.001.
If this is not achieved within 100 iterations an error is flagged.

If the --pwe option is given, the Prais–Winsten estimator is used. This involves an iteration similar
to Cochrane–Orcutt; the difference is that while Cochrane–Orcutt discards the first observation,
Prais–Winsten makes use of it. See, for example, Chapter 13 of Greene (2000) for details.

If the --hilu option is given, the Hildreth–Lu search procedure is used. The results are then fine-
tuned using the Cochrane–Orcutt method, unless the --no-corc flag is specified. The --no-corc
option is ignored for estimators other than Hildreth–Lu.

Menu path: /Model/Univariate time series/AR Errors (GLS)

arch

Arguments: order depvar indepvars

Option: --quiet (don’t print anything)

Example: arch 4 y 0 x1 x2 x3

Chapter 1. Gretl commands 7

This command is retained at present for backward compatibility, but you are better off using the
maximum likelihood estimator offered by the garch command; for a plain ARCH model, set the first
GARCH parameter to 0.

Estimates the given model specification allowing for ARCH (Autoregressive Conditional Hetero-
skedasticity). The model is first estimated via OLS, then an auxiliary regression is run, in which
the squared residual from the first stage is regressed on its own lagged values. The final step is
weighted least squares estimation, using as weights the reciprocals of the fitted error variances
from the auxiliary regression. (If the predicted variance of any observation in the auxiliary regres-
sion is not positive, then the corresponding squared residual is used instead).

The alpha values displayed below the coefficients are the estimated parameters of the ARCH pro-
cess from the auxiliary regression.

See also garch and modtest (the --arch option).

arima

Arguments: p d q [; P D Q] ; depvar [indepvars]

Options: --verbose (print details of iterations)

--quiet (don’t print out results)

--vcv (print covariance matrix)

--hessian (see below)

--opg (see below)

--nc (do not include a constant)

--conditional (use conditional maximum likelihood)

--x-12-arima (use X-12-ARIMA, or X13, for estimation)

--lbfgs (use L-BFGS-B maximizer)

--y-diff-only (ARIMAX special, see below)

--lagselect (see below)

Examples: arima 1 0 2 ; y

arima 2 0 2 ; y 0 x1 x2 --verbose

arima 0 1 1 ; 0 1 1 ; y --nc

See also armaloop.inp, auto_arima.inp, bjg.inp

Note: arma is an acceptable alias for this command.

If no indepvars list is given, estimates a univariate ARIMA (Autoregressive, Integrated, Moving
Average) model. The values p, d and q represent the autoregressive (AR) order, the differencing
order, and the moving average (MA) order respectively. These values may be given in numerical
form, or as the names of pre-existing scalar variables. A d value of 1, for instance, means that the
first difference of the dependent variable should be taken before estimating the ARMA parameters.

If you wish to include only specific AR or MA lags in the model (as opposed to all lags up to a given
order) you can substitute for p and/or q either (a) the name of a pre-defined matrix containing a
set of integer values or (b) an expression such as {1,4}; that is, a set of lags separated by commas
and enclosed in braces.

The optional integer values P, D and Q represent the seasonal AR order, the order for seasonal
differencing, and the seasonal MA order, respectively. These are applicable only if the data have a
frequency greater than 1 (for example, quarterly or monthly data). These orders may be given in
numerical form or as scalar variables.

In the univariate case the default is to include an intercept in the model but this can be suppressed
with the --nc flag. If indepvars are added, the model becomes ARMAX; in this case the constant
should be included explicitly if you want an intercept (as in the second example above).

Chapter 1. Gretl commands 8

An alternative form of syntax is available for this command: if you do not want to apply differencing
(either seasonal or non-seasonal), you may omit the d and D fields altogether, rather than explicitly
entering 0. In addition, arma is a synonym or alias for arima. Thus for example the following
command is a valid way to specify an ARMA(2, 1) model:

arma 2 1 ; y

The default is to use the “native” gretl ARMA functionality, with estimation by exact ML; estimation
via conditional ML is available as an option. (If X-12-ARIMA is installed you have the option of using
it instead of native code. Note that the newer X13 works as a drop-in replacement in exactly the
same way.) For details regarding these options, please see chapter 31 of the Gretl User’s Guide.

When native exact ML code is used, estimated standard errors are by default based on a numerical
approximation to the (negative inverse of) the Hessian, with a fallback to the outer product of the
gradient (OPG) if calculation of the numerical Hessian should fail. Two (mutually exclusive) option
flags can be used to force the issue: the --opg option forces use of the OPG method, with no
attempt to compute the Hessian, while the --hessian flag disables the fallback to OPG. Note that
failure of the numerical Hessian computation is generally an indicator of a misspecified model.

The option --lbfgs is specific to estimation using native ARMA code and exact ML: it calls for use
of the “limited memory” L-BFGS-B algorithm in place of the regular BFGS maximizer. This may help
in some instances where convergence is difficult to achieve.

The option --y-diff-only is specific to estimation of ARIMAX models (models with a non-zero
order of integration and including exogenous regressors), and applies only when gretl’s native exact
ML is used. For such models the default behavior is to difference both the dependent variable and
the regressors, but when this option is specified only the dependent variable is differenced, the
regressors remaining in level form.

The AIC value given in connection with ARIMA models is calculated according to the definition used
in X-12-ARIMA, namely

AIC = −2ℓ + 2k

where ℓ is the log-likelihood and k is the total number of parameters estimated. Note that X-12-
ARIMA does not produce information criteria such as AIC when estimation is by conditional ML.

The AR and MA roots shown in connection with ARMA estimation are based on the following
representation of an ARMA(p,q) process:

(1−φ1L−φ2L2 − · · · −φpLp)Y = c + (1+ θ1L+ θ2L2 + · · · + θqLq)εt

The AR roots are therefore the solutions to

1−φ1z −φ2z2 − · · · −φpLp = 0

and stability requires that these roots lie outside the unit circle.

The “frequency” figure printed in connection with the AR and MA roots is the λ value that solves
z = rei2πλ, where z is the root in question and r is its modulus.

Lag selection

When the --lagselect option is given, this command does not give specific estimates, but instead
produces a table showing information criteria and log-likelihood for a number of ARMA or ARIMA
specifications. The lag orders p and q are taken as maxima; and if a seasonal specification is
provided P and Q are also taken as maxima. In each case the minimum order is taken to be 0, and
results are shown for all specifications from mimima to maxima. The degrees of differencing in the
command, d and/or D, are respected but not treated as subject to search. A matrix holding the
results is available via the $test accessor.

Menu path: /Model/Univariate time series/ARIMA

Chapter 1. Gretl commands 9

arma

See arima; arma is an alias.

bds

Arguments: order x

Options: --corr1=rho (see below)

--sdcrit=multiple (see below)

--boot=N (see below)

--matrix=m (use matrix input)

--quiet (suppress printing of results)

Examples: bds 5 x

bds 3 --matrix=m

bds 4 --sdcrit=2.0

Performs the BDS (Brock et al. (1996)) test for nonlinearity of the series x. In an econometric
context this is typically used to test a regression residual for violation of the IID condition. The test
is based on a set of correlation integrals, designed to detect nonlinearity of progressively higher
dimensionality, and the order argument sets the number of such integrals. This must be at least
2; the first integral establishes a baseline but does not support a test. The BDS test is of the
portmanteau type: able to detect all manner of departures from linearity but not informative about
how exactly the condition was violated.

Instead of giving x as a series, the --matrix option can be used to specify a matrix as input. The
matrix must be a vector (column or row).

Criterion for closeness

The correlation integrals are based on a measure of “closeness” of data points, where two points
are considered close if they lie within ϵ of each other. The test requires a specification of ϵ. By
default gretl follows the recommendation of Kanzler (1999): ϵ is chosen such that the first-order
correlation integral is around 0.7. A common alternative (requiring less computation) is to specify
ϵ as a multiple of the standard deviation of the target series. The --sdcrit option supports the
latter method; in the third example above ϵ is set to twice the standard deviation of x. The --corr1
option implies use of Kanzler’s method but allows for a target correlation other than 0.7. It should
be clear that these two options are mutually exclusive.

Bootstrapping

BDS test statistics are asymptotically distributed as N(0,1) but the test over-rejects quite markedly
in small to moderate-sized samples. For that reason P -values are by default obtained via bootstrap-
ping when x is of length less than 600 (but by reference to the normal distribution otherwise). If
you want to use the bootstrap for larger samples you can force the issue by giving a non-zero value
for the --boot option, Conversely, if you don’t want bootstrapping for smaller samples, give a zero
value for --boot.

P-values

When bootstrapping is performed the default number of iterations is 1999, but you can specify a
different number by giving a value greater than 1 with --boot.

Accessor matrix

On successful completion of this command, $result retrieves the test results in the form of a matrix
with two rows and order − 1 columns. The first row contains test statistics and the second P -values

Chapter 1. Gretl commands 10

for each of the per-dimension tests under the null that x is linear/IID.

biprobit

Arguments: depvar1 depvar2 indepvars1 [; indepvars2]

Options: --vcv (print covariance matrix)

--robust (robust standard errors)

--cluster=clustvar (see logit for explanation)

--opg (see below)

--save-xbeta (see below)

--verbose (print extra information)

Examples: biprobit y1 y2 0 x1 x2

biprobit y1 y2 0 x11 x12 ; 0 x21 x22

See also biprobit.inp

Estimates a bivariate probit model, using the Newton–Raphson method to maximize the likelihood.

The argument list starts with the two (binary) dependent variables, followed by a list of regressors.
If a second list is given, separated by a semicolon, this is interpreted as a set of regressors specific
to the second equation, with indepvars1 being specific to the first equation; otherwise indepvars1
is taken to represent a common set of regressors.

By default, standard errors are computed using the analytical Hessian at convergence. But if the
--opg option is given the covariance matrix is based on the Outer Product of the Gradient (OPG),
or if the --robust option is given QML standard errors are calculated, using a “sandwich” of the
inverse of the Hessian and the OPG.

Note that the estimate of rho, the correlation of the error terms across the two equations, is in-
cluded in the coefficient vector; it’s the last element in the accessors coeff, stderr and vcv.

After successful estimation, the accessor $uhat retrieves a matrix with two columns holding the
generalized residuals for the two equations; that is, the expected values of the disturbances con-
ditional on the observed outcomes and covariates. By default $yhat retrieves a matrix with four
columns, holding the estimated probabilities of the four possible joint outcomes for (y1, y2), in
the order (1,1), (1,0), (0,1), (0,0). Alternatively, if the option --save-xbeta is given, $yhat has two
columns and holds the values of the index functions for the respective equations.

The output includes a test of the null hypothesis that the disturbances in the two equations are
uncorrelated. This is a likelihood ratio test unless the QML variance estimator is requested, in
which case it’s a Wald test.

bkw

Option: --quiet (don’t print anything)

Example: longley.inp

Must follow the estimation of a model which includes at least two independent variables. Calculates
and displays diagnostic information pertaining to collinearity, namely the BKW Table, based on the
work of Belsley et al. (1980). This table presents a sophisticated analysis of the degree and sources
of collinearity, via eigenanalysis of the inverse correlation matrix. For a thorough account of the
BKW approach with reference to gretl, and with several examples, see Adkins et al. (2015).

Following this command the $result accessor may be used to retrieve the BKW table as a matrix.
See also the vif command for a simpler approach to diagnosing collinearity.

There is also a function named bkw which offers greater flexibility.

Menu path: Model window, /Analysis/Collinearity

Chapter 1. Gretl commands 11

boxplot

Argument: varlist

Options: --notches (show 90 percent interval for median)

--factorized (see below)

--panel (see below)

--matrix=name (plot columns of named matrix)

--output=filename (send output to specified file)

These plots display the distribution of a variable. The central box encloses the middle 50 percent
of the data, i.e. it is bounded by the first and third quartiles. The “whiskers” extend from each end
of the box for a range equal to 1.5 times the interquartile range. Observations outside that range
are considered outliers and represented via dots. A line is drawn across the box at the median. A
“+” sign is used to indicate the mean. If the option of showing a confidence interval for the median
is selected, this is computed via the bootstrap method and shown in the form of dashed horizontal
lines above and/or below the median.

The --factorized option allows you to examine the distribution of a chosen variable conditional
on the value of some discrete factor. For example, if a data set contains wages and a gender dummy
variable you can select the wage variable as the target and gender as the factor, to see side-by-side
boxplots of male and female wages, as in

boxplot wage gender --factorized

Note that in this case you must specify exactly two variables, with the factor given second.

If the current data set is a panel, and just one variable is specified, the --panel option produces a
series of side-by-side boxplots, one for each panel “unit” or group.

Generally, the argument varlist is required, and refers to one or more series in the current dataset
(given either by name or ID number). But if a named matrix is supplied via the --matrix option
this argument becomes optional: by default a plot is drawn for each column of the specified matrix.

Gretl’s boxplots are generated using gnuplot, and it is possible to specify the plot more fully by
appending additional gnuplot commands, enclosed in braces. For details, please see the help for
the gnuplot command.

In interactive mode the result is displayed immediately. In batch mode the default behavior is
that a gnuplot command file is written in the user’s working directory, with a name on the pattern
gpttmpN.plt, starting with N = 01. The actual plots may be generated later using gnuplot (under
MS Windows, wgnuplot). This behavior can be modified by use of the --output=filename option.
For details, please see the gnuplot command.

Menu path: /View/Graph specified vars/Boxplots

break

Break out of a loop. This command can be used only within a loop; it causes command execution
to break out of the current (innermost) loop. See also loop, continue.

catch

Syntax: catch command

This is not a command in its own right but can be used as a prefix to most regular commands: the
effect is to prevent termination of a script if an error occurs in executing the command. If an error
does occur, this is registered in an internal error code which can be accessed as $error (a zero value
indicates success). The value of $error should always be checked immediately after using catch,
and appropriate action taken if the command failed.

Chapter 1. Gretl commands 12

The catch keyword cannot be used before if, elif or endif. In addition it should not be used on
calls to user-defined functions; it is intended for use only with gretl commands and calls to “built-
in” functions or operators. Furthermore, catch cannot be used in conjunction with “back-arrow”
assignment of models or plots to session icons (see chapter 3 of the Gretl User’s Guide).

chow

Variants: chow obs

chow dummyvar --dummy

Options: --dummy (use a pre-existing dummy variable)

--quiet (don’t print estimates for augmented model)

--limit-to=list (limit test to subset of regressors)

Examples: chow 25

chow 1988:1

chow female --dummy

Must follow an OLS regression. If an observation number or date is given, provides a test for the
null hypothesis of no structural break at the given split point. The procedure is to create a dummy
variable which equals 1 from the split point specified by obs to the end of the sample, 0 otherwise,
and also interaction terms between this dummy and the original regressors. If a dummy variable
is given, tests the null hypothesis of structural homogeneity with respect to that dummy. Again,
interaction terms are added. In either case an augmented regression is run including the additional
terms.

By default an F statistic is calculated, taking the augmented regression as the unrestricted model
and the original as the restricted. But if the original model used a robust estimator for the co-
variance matrix, the test statistic is a Wald chi-square value based on a robust estimator of the
covariance matrix for the augmented regression.

The --limit-to option can be used to limit the set of interactions with the split dummy variable
to a subset of the original regressors. The parameter for this option must be a named list, all of
whose members are among the original regressors. The list should not include the constant.

Menu path: Model window, /Tests/Chow test

clear

Options: --dataset (clear dataset only)

--functions (clear functions (only))

--all (clear everything)

By default this command clears the current dataset (if any) plus all saved variables (scalars, matri-
ces, etc.) out of memory. Note that opening a new dataset, or using the nulldata command to
create an empty dataset, also has this effect, so explicit use of clear is not usually necessary.

If the --dataset option is given, then only the dataset is cleared (plus any named lists of series);
other saved objects such as matrices, scalars and bundles are preserved.

If the --functions option is given, then any user-defined functions, and any functions defined by
packages that have been loaded, are cleared out of memory. The dataset and other variables are
not affected.

If the --all option is given, clearing is comprehensive: the dataset, saved variables of all kinds,
plus user-defined and packaged functions.

Chapter 1. Gretl commands 13

coeffsum

Argument: varlist

Option: --quiet (don’t print anything)

Example: coeffsum xt xt_1 xr_2

restrict.inp

Must follow a regression. Calculates the sum of the coefficients on the variables in varlist. Prints
this sum along with its standard error and the p-value for the null hypothesis that the sum is zero.

Note the difference between this and omit, which tests the null hypothesis that the coefficients on
a specified subset of independent variables are all equal to zero.

The --quiet option may be useful if one just wants access to the $test and $pvalue values that are
recorded on successful completion.

Menu path: Model window, /Tests/Sum of coefficients

coint

Arguments: order depvar indepvars

Options: --nc (do not include a constant)

--ct (include constant and trend)

--ctt (include constant and quadratic trend)

--seasonals (include seasonal dummy variables)

--skip-df (no DF tests on individual variables)

--test-down[=criterion] (automatic lag order)

--verbose (print extra details of regressions)

--silent (don’t print anything)

Examples: coint 4 y x1 x2

coint 0 y x1 x2 --ct --skip-df

The Engle and Granger (1987) cointegration test. The default procedure is: (1) carry out Dickey–
Fuller tests on the null hypothesis that each of the variables listed has a unit root; (2) estimate the
cointegrating regression; and (3) run a DF test on the residuals from the cointegrating regression.
If the --skip-df flag is given, step (1) is omitted.

If the specified lag order is positive all the Dickey–Fuller tests use that order, with this qualification:
if the --test-down option is given, the given value is taken as the maximum and the actual lag
order used in each case is obtained by testing down. See the adf command for details of this
procedure.

By default, the cointegrating regression contains a constant. If you wish to suppress the constant,
add the --nc flag. If you wish to augment the list of deterministic terms in the cointegrating
regression with a linear or quadratic trend, add the --ct or --ctt flag. These option flags are
mutually exclusive. You also have the option of adding seasonal dummy variables (in the case of
quarterly or monthly data).

P-values for this test are based on MacKinnon (1996). The relevant code is included by kind per-
mission of the author.

For the cointegration tests due to Søren Johansen, see johansen.

Menu path: /Model/Multivariate time series

continue

This command can be used only within a loop; it has the effect of skipping the subsequent state-
ments within the current iteration of the current (innermost) loop. See also loop, break

Chapter 1. Gretl commands 14

corr

Variants: corr [varlist]

corr --matrix=matname

Options: --uniform (ensure uniform sample)

--spearman (Spearman’s rho)

--kendall (Kendall’s tau)

--verbose (print rankings)

--plot=mode-or-filename (see below)

--triangle (only plot lower half, see below)

--quiet (do not print anything)

Examples: corr y x1 x2 x3

corr ylist --uniform

corr x y --spearman

corr --matrix=X --plot=display

By default, prints the pairwise correlation coefficients (Pearson’s product-moment correlation) for
the variables in varlist, or for all variables in the data set if varlist is not given. The standard
behavior is to use all available observations for computing each pairwise coefficient, but if the
--uniform option is given the sample is limited (if necessary) so that the same set of observations
is used for all the coefficients. This option has an effect only if there are differing numbers of
missing values for the variables used.

The (mutually exclusive) options --spearman and --kendall produce, respectively, Spearman’s
rank correlation rho and Kendall’s rank correlation tau in place of the default Pearson coefficient.
When either of these options is given, varlist should contain just two variables.

When a rank correlation is computed, the --verbose option can be used to print the original and
ranked data (otherwise this option is ignored).

If varlist contains more than two series and gretl is not in batch mode, a “heatmap” plot of the
correlation matrix is shown. This can be adjusted via the --plot option. The acceptable parameters
to this option are none (to suppress the plot); display (to display a plot even when in batch mode);
or a file name. The effect of providing a file name is as described for the --output option of the
gnuplot command. When plotting is active the option --triangle can be used to show only the
lower triangle of the matrix plot.

If the alternative form is given, using a named matrix rather than a list of series, the --spearman
and --kendall options are not available—but see the npcorr function.

The $result accessor can be used to obtain the correlations as a matrix. Note that if it’s this matrix
that’s of interest, not just the pairwise coefficients, then in the presence of missing values it’s
advisable to use the --uniform option. Unless a single, common sample is used it is not guaranteed
that the correlation matrix will be positive semidefinite, as it ought to be by construction.

Menu path: /View/Correlation matrix

Other access: Main window pop-up menu (multiple selection)

Chapter 1. Gretl commands 15

corrgm

Arguments: y [order]

Options: --bartlett (use Bartlett standard errors)

--plot=mode-or-filename (see below)

--silent (don’t print anything)

--acf-only (omit partial autocorrelations)

Examples: corrgm x 12

corrgm GDP 12 --acf-only

Prints and/or graphs the values of the autocorrelation function (ACF) for the series y, which may be
specified by name or number. The values are defined as ρ̂(ut , ut−s), where ut is the tth observation
of the variable u and s denotes the number of lags.

Unless the --acf-only option is given, partial autocorrelations (PACF, calculated using the Durbin–
Levinson algorithm) are also shown: these are net of the effects of intervening lags.

Asterisks are used to indicate statistical significance of the individual autocorrelations. By default
this is assessed using a standard error of one over the square root of the sample size, but if the
--bartlett option is given then Bartlett standard errors are used for the ACF. This option also
governs the confidence band drawn in the ACF plot, if applicable. In addition the Ljung–Box Q
statistic is shown; this tests the null that the series is “white noise” up to the given lag.

If an order value is specified the length of the correlogram is limited to at most that number of
lags, otherwise the length is determined automatically, as a function of the frequency of the data
and the number of observations.

Plotting

By default, if gretl is not in batch mode a plot of the correlogram is shown. This can be adjusted
via the --plot option. The acceptable parameters to this option are none (to suppress the plot);
display (to show a plot even when in batch mode); or a file name. The effect of providing a file
name is as described for the --output option of the gnuplot command.

Accessors

Upon successful completion, the accessors $test and $pvalue can be used to retrieve the Q statistic
and its P -value, evaluated at the maximum lag. Note that if you just want this test you can use use
the ljungbox function instead.

Menu path: /Variable/Correlogram

Other access: Main window pop-up menu (single selection)

cusum

Options: --squares (perform the CUSUMSQ test)

--quiet (just print the Harvey–Collier test)

--plot=mode-or-filename (see below)

Must follow the estimation of a model via OLS. Performs the CUSUM test—or if the --squares op-
tion is given, the CUSUMSQ test—for parameter stability. A series of one-step ahead forecast errors
is obtained by running a series of regressions: the first regression uses the first k observations and
is used to generate a prediction of the dependent variable at observation k + 1; the second uses the
first k + 1 observations and generates a prediction for observation k + 2, and so on (where k is the
number of parameters in the original model).

The cumulated sum of the scaled forecast errors, or the squares of these errors, is printed. The
null hypothesis of parameter stability is rejected at the 5 percent significance level if the cumulated

Chapter 1. Gretl commands 16

sum strays outside of the 95 percent confidence band.

In the case of the CUSUM test, the Harvey–Collier t-statistic for testing the null hypothesis of
parameter stability is also printed. See Greene’s Econometric Analysis for details. For the CUSUMSQ
test, the 95 percent confidence band is calculated using the algorithm given in Edgerton and Wells
(1994).

By default, if gretl is not in batch mode a plot of the cumulated series and confidence band is shown.
This can be adjusted via the --plot option. The acceptable parameters to this option are none (to
suppress the plot); display (to display a plot even when in batch mode); or a file name. The effect
of providing a file name is as described for the --output option of the gnuplot command.

Menu path: Model window, /Tests/CUSUM(SQ)

data

Argument: varlist

Options: --compact=method (specify compaction method)

--quiet (don’t report results except on error)

--name=identifier (rename imported series)

--odbc (import from ODBC database)

--no-align (ODBC-specific, see below)

Reads the variables in varlist from a database file (native gretl, RATS 4.0 or PcGive), which must
have been opened previously using the open command. The data command can also be used to
import series from DB.NOMICS or from an ODBC database; for details on those variants see gretl +
DB.NOMICS or chapter 42 of the Gretl User’s Guide, respectively.

The data frequency and sample range may be established via the setobs and smpl commands prior
to using this command. Here’s an example:

open fedstl.bin
setobs 12 2000:01
smpl ; 2019:12
data unrate cpiaucsl

The commands above open the database named fedstl.bin (which is supplied with gretl), estab-
lish a monthly dataset starting in January 2000 and ending in December of 2019, and then import
the series named unrate (unemployment rate) and cpiaucsl (all-items CPI).

If setobs and smpl are not specified in this way, the data frequency and sample range are set using
the first variable read from the database.

If the series to be read are of higher frequency than the working dataset, you may specify a com-
paction method as below:

data LHUR PUNEW --compact=average

The five available compaction methods are “average” (takes the mean of the high frequency obser-
vations), “last” (uses the last observation), “first”, “sum” and “spread”. If no method is specified,
the default is to use the average. The “spread” method is special: no information is lost, rather it
is spread across multiple series, one per sub-period. So for example when adding a monthly series
to a quarterly dataset three series are created, one for each month of the quarter; their names bear
the suffixes m01, m02 and m03.

If the series to be read are of lower frequency than the working dataset the values of the added data
are simply repeated as required, but note that the tdisagg function can then be used to distribution
or interpolation (“temporal disaggregation”).

Chapter 1. Gretl commands 17

In the case of native gretl databases (only), the “glob” characters * and ? can be used in varlist to
import series that match the given pattern. For example, the following will import all series in the
database whose names begin with cpi:

data cpi*

The --name option can be used to set a name for the imported series other than the original name
in the database. The parameter must be a valid gretl identifier. This option is restricted to the case
where a single series is specified for importation.

The --no-align option applies only to importation of series via ODBC. By default we require that
the ODBC query returns information telling gretl on which rows of the dataset to place the incoming
data—or at least that the number of incoming values matches either the length of the dataset or
the length of the current sample range. Setting the --no-align option relaxes this requirement:
failing the conditions just mentioned, incoming values are simply placed consecutively starting at
the first row of the dataset. If there are fewer such values than rows in the dataset the trailing rows
are filled with NAs; if there are more such values than rows the extra values are discarded. For
more on ODBC importation see chapter 42 of the Gretl User’s Guide.

Menu path: /File/Databases

dataset

Arguments: keyword parameters

Option: --panel-time (see addobs below)

Examples: dataset addobs 24

dataset addobs 2 --panel-time

dataset insobs 10

dataset compact 1

dataset compact 4 last

dataset expand

dataset transpose

dataset sortby x1

dataset resample 500

dataset renumber x 4

dataset pad-daily 7

dataset unpad-daily

dataset clear

Performs various operations on the data set as a whole, depending on the given keyword, which
must be addobs, insobs, clear, compact, expand, transpose, sortby, dsortby, resample, renumber,
pad-daily or unpad-daily. Note: with the exception of clear, these actions are not available
when the dataset is currently subsampled by selection of cases on some Boolean criterion.

addobs: Must be followed by a positive integer, call it n. Adds n extra observations to the end of the
working dataset. This is primarily intended for forecasting purposes. The values of most variables
over the additional range will be set to missing, but certain deterministic variables are recognized
and extended, namely, a simple linear trend and periodic dummy variables. If the dataset takes
the form of a panel, the default action is to add n cross-sectional units to the panel, but if the
--panel-time flag is given the effect is to add n observations to the time series for each unit.

insobs: Must be followed by a positive integer no greater than the current number of observations.
Inserts a single observation at the specified position. All subsequent data are shifted by one place
and the dataset is extended by one observation. All variables apart from the constant are given
missing values at the new observation. This action is not available for panel datasets.

Chapter 1. Gretl commands 18

clear: No parameter required. Clears out the current data, returning gretl to its initial “empty”
state.

compact: This action is available for time series data only; it compacts all the series in the data
set to a lower frequency. It requires one parameter, a positive integer representing the new fre-
quency. In general this should be lower than the current frequency (for example, a value of 4 when
the current frequency is 12 indicates compaction from monthly to quarterly). The one exception
is a new frequency of 52 (weekly) when the current data are daily (frequency 5, 6 or 7). A second
parameter may be given, namely one of sum, first, last or spread, to specify, respectively, com-
paction using the sum of the higher-frequency values, start-of-period values, end-of-period values,
or spreading of the higher-frequency values across multiple series (one per sub-period). The default
is to compact by averaging.

In the case of compaction from daily to weekly frequency (only), the two special options --repday
and --weekstart are available. The first of these allows you to select a “representative day” of the
week to serve as the weekly value. The parameter to this option must be an integer from 0 (Sunday)
to 6 (Saturday). For example, giving --repday=3 selects Wednesday’s value as the weekly value. If
the --repday option is not given, we need to know on which day the week is deemed to start in
order to align the data correctly. For 5- or 6-day data this is always taken to be Monday, but with 7-
day data you have a choice between --weekstart=0 (Sunday) and --weekstart=1 (Monday), with
Monday being the default.

expand: This action is only available for annual or quarterly time series data: annual data can be
expanded to quarterly or monthly, and quarterly data to monthly. All series in the data set are
padded out to the new frequency by repeating the existing values. If the original dataset is annual
the default expansion is to quarterly but expand can be followed by 12 to request monthly. See the
tdisagg function for more sophisticated means of converting data to higher frequency.

transpose: No additional parameter required. Transposes the current data set. That is, each
observation (row) in the current data set will be treated as a variable (column), and each variable
as an observation. This action may be useful if data have been read from some external source in
which the rows of the data table represent variables.

sortby: The name of a single series or list is required. If one series is given, the observations on all
variables in the dataset are re-ordered by increasing value of the specified series. If a list is given,
the sort proceeds hierarchically: if the observations are tied in sort order with respect to the first
key variable then the second key is used to break the tie, and so on until the tie is broken or the
keys are exhausted. Note that this action is available only for undated data.

dsortby: Works as sortby except that the re-ordering is by decreasing value of the key series.

resample: Constructs a new dataset by random sampling, with replacement, of the rows of the
current dataset. One argument is required, namely the number of rows to include. This may be less
than, equal to, or greater than the number of observations in the original data. The original dataset
can be retrieved via the command smpl full.

renumber: Requires the name of an existing series followed by an integer between 1 and the number
of series in the dataset minus one. Moves the specified series to the specified position in the dataset,
renumbering the other series accordingly. (Position 0 is occupied by the constant, which cannot be
moved.)

pad-daily: Valid only if the current dataset contains dated daily data with an incomplete calendar.
The effect is to pad the data out to a complete calendar by inserting blank rows (that is, rows
containing nothing but NAs). This option requires an integer parameter, namely the number of days
per week, which must be 5, 6 or 7, and must be greater than or equal to the current data frequency.
On successful completion, the data calendar will be “complete” relative to this value. For example
if days-per-week is 5 then all weekdays will be represented, whether or not any data are available
for those days.

unpad-daily: Valid only if the current dataset contains dated daily data, in which case it performs
the inverse operation of pad-daily. That is, any rows that contain nothing but NAs are removed,

Chapter 1. Gretl commands 19

while the time-series property of the dataset is preserved along with the dates of the individual
observations.

Menu path: /Data

delete

Variants: delete varlist

delete varname

delete --type=type-name

delete pkgname

Options: --db (delete series from database)

--force (see below)

This command is an all-purpose destructor. It should be used with caution; no confirmation is
asked.

In the first form above, varlist is a list of series, given by name or ID number. Note that when you
delete series any series with higher ID numbers than those on the deletion list will be re-numbered.
If the --db option is given, this command deletes the listed series not from the current dataset but
from a gretl database, assuming that a database has been opened, and the user has write permission
for file in question. See also the open command.

In the second form, the name of a scalar, matrix, string or bundle may be given for deletion. The
--db option is not applicable in this case. Note that series and variables of other types should not
be mixed in a given call to delete.

In the third form, the --type option must be accompanied by one of the following type-names:
matrix, bundle, string, list, scalar or array. The effect is to delete all variables of the given
type. In this case no argument other than the option should be given.

The fourth form can be used to unload a function package. In this case the .gfn suffix must be
supplied, as in

delete somepkg.gfn

Note that this does not delete the package file, it just unloads the package from memory.

Deleting variables in a loop

In general it is not permitted to delete variables in the context of a loop, since this may threaten
the integrity of the loop code. However, if you are confident that deleting a certain variable is safe
you can override this prohibition by appending the --force flag to the delete command.

Menu path: Main window pop-up (single selection)

diff

Argument: varlist

Examples: penngrow.inp, sw_ch12.inp, sw_ch14.inp

The first difference of each variable in varlist is obtained and the result stored in a new variable
with the prefix d_. Thus diff x y creates the new variables

d_x = x(t) - x(t-1)
d_y = y(t) - y(t-1)

Menu path: /Add/First differences of selected variables

Chapter 1. Gretl commands 20

difftest

Arguments: series1 series2

Options: --sign (Sign test, the default)

--rank-sum (Wilcoxon rank-sum test)

--signed-rank (Wilcoxon signed-rank test)

--verbose (print extra output)

--quiet (suppress printed output)

Example: ooballot.inp

Carries out a nonparametric test for a difference between two populations or groups, the specific
test depending on the option selected.

With the --sign option, the Sign test is performed. This test is based on the fact that if two
samples, x and y , are drawn randomly from the same distribution, the probability that xi > yi, for
each observation i, should equal 0.5. The test statistic is w, the number of observations for which
xi > yi. Under the null hypothesis this follows the Binomial distribution with parameters (n, 0.5),
where n is the number of observations.

With the --rank-sum option, the Wilcoxon rank-sum test is performed. This test proceeds by
ranking the observations from both samples jointly, from smallest to largest, then finding the sum
of the ranks of the observations from one of the samples. The two samples do not have to be of the
same size, and if they differ the smaller sample is used in calculating the rank-sum. Under the null
hypothesis that the samples are drawn from populations with the same median, the probability
distribution of the rank-sum can be computed for any given sample sizes; and for reasonably large
samples a close Normal approximation exists.

With the --signed-rank option, the Wilcoxon signed-rank test is performed. This is designed
for matched data pairs such as, for example, the values of a variable for a sample of individuals
before and after some treatment. The test proceeds by finding the differences between the paired
observations, xi − yi, ranking these differences by absolute value, then assigning to each pair a
signed rank, the sign agreeing with the sign of the difference. One then calculates W+, the sum of
the positive signed ranks. As with the rank-sum test, this statistic has a well-defined distribution
under the null that the median difference is zero, which converges to the Normal for samples of
reasonable size.

For the Wilcoxon tests, if the --verbose option is given then the ranking is printed. (This option
has no effect if the Sign test is selected.)

On successful completion the accessors $test and $pvalue are available. If one just wants to obtain
these values the --quiet flag can be appended to the command.

discrete

Argument: varlist

Option: --reverse (mark variables as continuous)

Examples: ooballot.inp, oprobit.inp

Marks each variable in varlist as being discrete. By default all variables are treated as continuous;
marking a variable as discrete affects the way the variable is handled in frequency plots, and also
allows you to select the variable for the command dummify.

If the --reverse flag is given, the operation is reversed; that is, the variables in varlist are marked
as being continuous.

Menu path: /Variable/Edit attributes

Chapter 1. Gretl commands 21

dpanel

Argument: p ; depvar indepvars [; instruments]

Options: --quiet (don’t show estimated model)

--vcv (print covariance matrix)

--two-step (perform 2-step GMM estimation)

--system (add equations in levels)

--collapse (see below)

--time-dummies (add time dummy variables)

--dpdstyle (emulate DPD package for Ox)

--asymptotic (uncorrected asymptotic standard errors)

--keep-extra (see below)

Examples: dpanel 2 ; y x1 x2

dpanel 2 ; y x1 x2 --system

dpanel {2 3} ; y x1 x2 ; x1

dpanel 1 ; y x1 x2 ; x1 GMM(x2,2,3)

See also bbond98.inp

Carries out estimation of dynamic panel data models (that is, panel models including one or more
lags of the dependent variable) using either the GMM-DIF or GMM-SYS method.

The parameter p represents the order of the autoregression for the dependent variable. In the
simplest case this is a scalar value, but a pre-defined matrix may be given for this argument, to
specify a set of (possibly non-contiguous) lags to be used.

The dependent variable and regressors should be given in levels form; they will be differenced
automatically (since this estimator uses differencing to cancel out the individual effects).

The last (optional) field in the command is for specifying instruments. If no instruments are given, it
is assumed that all the independent variables are strictly exogenous. If you specify any instruments,
you should include in the list any strictly exogenous independent variables. For predetermined
regressors, you can use the GMM function to include a specified range of lags in block-diagonal
fashion. This is illustrated in the third example above. The first argument to GMM is the name of the
variable in question, the second is the minimum lag to be used as an instrument, and the third is
the maximum lag. The same syntax can be used with the GMMlevel function to specify GMM-type
instruments for the equations in levels.

The --collapse option can be used to limit the proliferation of “GMM-style” instruments, which
can be a problem with this estimator. Its effect is to reduce such instruments from one per lag per
observation to one per lag.

By default the results of 1-step estimation are reported (with robust standard errors). You may
select 2-step estimation as an option. In both cases tests for autocorrelation of orders 1 and 2 are
provided, as well as Sargan and/or Hansen overidentification tests and a Wald test for the joint
significance of the regressors. Note that in this differenced model first-order autocorrelation is
not a threat to the validity of the model, but second-order autocorrelation violates the maintained
statistical assumptions.

In the case of 2-step estimation, standard errors are by default computed using the finite-sample
correction suggested by Windmeijer (2005). The standard asymptotic standard errors associated
with the 2-step estimator are generally reckoned to be an unreliable guide to inference, but if for
some reason you want to see them you can use the --asymptotic option to turn off the Windmeijer
correction.

If the --time-dummies option is given, a set of time dummy variables is added to the specified
regressors. The number of dummies is one less than the maximum number of periods used in
estimation, to avoid perfect collinearity with the constant. The dummies are entered in differenced

Chapter 1. Gretl commands 22

form unless the --dpdstyle option is given, in which case they are entered in levels.

As with other estimation commands, a $model bundle is available after estimation. In the case
of dpanel, the --keep-extra option can be used to save additional information in this bundle,
namely the GMM weight and instrument matrices.

For further details and examples, please see chapter 24 of the Gretl User’s Guide.

Menu path: /Model/Panel/Dynamic panel model

dummify

Argument: varlist

Options: --drop-first (omit lowest value from encoding)

--drop-last (omit highest value from encoding)

For any suitable variables in varlist, creates a set of dummy variables coding for the distinct values
of that variable. Suitable variables are those that have been explicitly marked as discrete, or those
that take on a fairly small number of values all of which are “fairly round” (multiples of 0.25).

By default a dummy variable is added for each distinct value of the variable in question. For
example if a discrete variable x has 5 distinct values, 5 dummy variables will be added to the data
set, with names Dx_1, Dx_2 and so on. The first dummy variable will have value 1 for observations
where x takes on its smallest value, 0 otherwise; the next dummy will have value 1 when x takes
on its second-smallest value, and so on. If one of the option flags --drop-first or --drop-last
is added, then either the lowest or the highest value of each variable is omitted from the encoding
(which may be useful for avoiding the “dummy variable trap”).

This command can also be embedded in the context of a regression specification. For example, the
following line specifies a model where y is regressed on the set of dummy variables coding for x.
(Option flags cannot be passed to dummify in this context.)

ols y dummify(x)

Other access: Main window pop-up menu (single selection)

duration

Arguments: depvar indepvars [; censvar]

Options: --exponential (use exponential distribution)

--loglogistic (use log-logistic distribution)

--lognormal (use log-normal distribution)

--medians (fitted values are medians)

--robust (robust (QML) standard errors)

--cluster=clustvar (see logit for explanation)

--vcv (print covariance matrix)

--verbose (print details of iterations)

--quiet (don’t print anything)

Examples: duration y 0 x1 x2

duration y 0 x1 x2 ; cens

See also weibull.inp

Estimates a duration model: the dependent variable (which must be positive) represents the dura-
tion of some state of affairs, for example the length of spells of unemployment for a cross-section
of respondents. By default the Weibull distribution is used but the exponential, log-logistic and
log-normal distributions are also available.

Chapter 1. Gretl commands 23

If some of the duration measurements are right-censored (e.g. an individual’s spell of unemploy-
ment has not come to an end within the period of observation) then you should supply the trailing
argument censvar, a series in which non-zero values indicate right-censored cases.

By default the fitted values obtained via the accessor $yhat are the conditional means of the dura-
tions, but if the --medians option is given then $yhat provides the conditional medians instead.

Please see chapter 38 of the Gretl User’s Guide for details.

Menu path: /Model/Limited dependent variable/Duration data

elif

See if.

else

See if. Note that else requires a line to itself, before the following conditional command. You can
append a comment, as in

else # OK, do something different

But you cannot append a command, as in

else x = 5 # wrong!

end

Ends a block of commands of some sort. For example, end system terminates an equation system.

endif

See if.

endloop

Marks the end of a command loop. See loop.

eqnprint

Options: --complete (Create a complete document)

--output=filename (send output to specified file)

Must follow the estimation of a model. Prints the estimated model in the form of a LATEX equation.
If a filename is specified using the --output option output goes to that file, otherwise it goes to a
file with a name of the form equation_N.tex, where N is the number of models estimated to date
in the current session. See also tabprint.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

If the --complete flag is given, the LATEX file is a complete document, ready for processing; other-
wise it must be included in a document.

Menu path: Model window, /LaTeX

Chapter 1. Gretl commands 24

equation

Arguments: depvar indepvars

Example: equation y x1 x2 x3 const

Specifies an equation within a system of equations (see system). The syntax for specifying an
equation within an SUR system is the same as that for, e.g., ols. For an equation within a Three-
Stage Least Squares system you may either (a) give an OLS-type equation specification and provide
a common list of instruments using the instr keyword (again, see system), or (b) use the same
equation syntax as for tsls.

estimate

Arguments: [systemname] [estimator]

Options: --iterate (iterate to convergence)

--no-df-corr (no degrees of freedom correction)

--geomean (see below)

--quiet (don’t print results)

--verbose (print details of iterations)

Examples: estimate "Klein Model 1" method=fiml

estimate Sys1 method=sur

estimate Sys1 method=sur --iterate

Calls for estimation of a system of equations, which must have been previously defined using the
system command. The name of the system should be given first, surrounded by double quotes
if the name contains spaces. The estimator, which must be one of ols, tsls, sur, 3sls, fiml or
liml, is preceded by the string method=. These arguments are optional if the system in question
has already been estimated and occupies the place of the “last model”; in that case the estimator
defaults to the previously used value.

If the system in question has had a set of restrictions applied (see the restrict command), estimation
will be subject to the specified restrictions.

If the estimation method is sur or 3sls and the --iterate flag is given, the estimator will be iter-
ated. In the case of SUR, if the procedure converges the results are maximum likelihood estimates.
Iteration of three-stage least squares, however, does not in general converge on the full-information
maximum likelihood results. The --iterate flag is ignored for other methods of estimation.

If the equation-by-equation estimators ols or tsls are chosen, the default is to apply a degrees of
freedom correction when calculating standard errors. This can be suppressed using the --no-df-corr
flag. This flag has no effect with the other estimators; no degrees of freedom correction is applied
in any case.

By default, the formula used in calculating the elements of the cross-equation covariance matrix is

σ̂i,j =
û′iûj
T

If the --geomean flag is given, a degrees of freedom correction is applied: the formula is

σ̂i,j =
û′iûj√

(T − ki)(T − kj)

where the ks denote the number of independent parameters in each equation.

If the --verbose option is given and an iterative method is specified, details of the iterations are
printed.

Chapter 1. Gretl commands 25

eval

Argument: expression

Examples: eval x

eval inv(X’X)

eval sqrt($pi)

This command makes gretl act like a glorified calculator. The program evaluates expression and
prints its value. The argument may be the name of a variable, or something more complicated. In
any case, it should be an expression which could stand as the right-hand side of an assignment
statement.

In interactive use (for instance in the gretl console) an equals sign works as shorthand for eval, as
in

=sqrt(x)

(with or without a space following “=”). But this variant is not accepted in scripting mode since it
could easily mask coding errors.

In most contexts print can be used in place of eval to much the same effect. See also printf for the
case where you wish to combine textual and numerical output.

fcast

Variants: fcast [startobs endobs] [vname]

fcast [startobs endobs] steps-ahead [vname] --recursive

Options: --dynamic (create dynamic forecast)

--static (create static forecast)

--out-of-sample (generate post-sample forecast)

--no-stats (don’t print forecast statistics)

--stats-only (only print forecast statistics)

--quiet (don’t print anything)

--recursive (see below)

--all-probs (see below)

--plot=filename (see below)

Examples: fcast 1997:1 2001:4 f1

fcast fit2

fcast 2004:1 2008:3 4 rfcast --recursive

See also gdp_midas.inp

Must follow an estimation command. Forecasts are generated for a certain range of observations:
if startobs and endobs are given, for that range (if possible); otherwise if the --out-of-sample
option is given, for observations following the range over which the model was estimated; otherwise
over the currently defined sample range. If an out-of-sample forecast is requested but no relevant
observations are available, an error is flagged. Depending on the nature of the model, standard
errors may also be generated; see below. Also see below for the special effect of the --recursive
option.

If the last model estimated is a single equation, then the optional vname argument has the following
effect: the forecast values are not printed, but are saved to the dataset under the given name. If
the last model is a system of equations, vname has a different effect, namely selecting a particular
endogenous variable for forecasting (the default being to produce forecasts for all the endogenous
variables). In the system case, or if vname is not given, the forecast values can be retrieved using
the accessor $fcast, and the standard errors, if available, via $fcse.

Chapter 1. Gretl commands 26

Static and dynamic forecasts

The choice between a static and a dynamic forecast applies only in the case of dynamic models, with
an autoregressive error process or including one or more lagged values of the dependent variable as
regressors. Static forecasts are one step ahead, based on realized values from the previous period,
while dynamic forecasts employ the chain rule of forecasting. For example, if a forecast for y in
2008 requires as input a value of y for 2007, a static forecast is impossible without actual data for
2007. A dynamic forecast for 2008 is possible if a prior forecast can be substituted for y in 2007.

The default is to give a static forecast for any portion of the forecast range that lies within the
sample range over which the model was estimated, and a dynamic forecast (if relevant) out of
sample. The --dynamic option requests a dynamic forecast from the earliest possible date, and
the --static option requests a static forecast even out of sample.

Recursive forecasts

The --recursive option is presently available only for single-equation models estimated via OLS.
When this option is given the forecasts are recursive. That is, each forecast is generated from an
estimate of the given model using data from a fixed starting point (namely, the start of the sample
range for the original estimation) up to the forecast date minus k, where k is the number of steps
ahead, which must be given in the steps-ahead argument. The forecasts are always dynamic if this
is applicable. Note that the steps-ahead argument should be given only in conjunction with the
--recursive option.

Ordered and multinomial models

When estimation is via ordered logit or probit, or multinomial logit, one may be interested in the
estimated probabilities of each of the discrete outcomes rather than just a “most likely” outcome
for each observation. This is supported by the --all-probs option: the output of fcast is then
a matrix with one column per possible outcome. The vname argument can be used to name this
matrix, in which case nothing is printed. If vname is not given the matrix can be retrieved via $fcast.
The --plot option is incompatible with --all-probs.

Forecast plots

The --plot option calls for a plot file to be produced, containing a graphical representation of the
forecast. In the system case this option is available only when the vname argument is used to select
a single variable for forecasting. The suffix of the filename argument to this option controls the
format of the plot: .eps for EPS, .pdf for PDF, .png for PNG, .plt for a gnuplot command file.
The dummy filename display can be used to force display of the plot in a window. For example,

fcast --plot=fc.pdf

will generate a graphic in PDF format. Absolute pathnames are respected, otherwise files are written
to the gretl working directory.

Standard errors

The nature of the forecast standard errors (if available) depends on the nature of the model and
the forecast. For static linear models standard errors are computed using the method outlined
by Davidson and MacKinnon (2004); they incorporate both uncertainty due to the error process
and parameter uncertainty (summarized in the covariance matrix of the parameter estimates). For
dynamic models, forecast standard errors are computed only in the case of a dynamic forecast, and
they do not incorporate parameter uncertainty. For nonlinear models, forecast standard errors are
not presently available.

Menu path: Model window, /Analysis/Forecasts

Chapter 1. Gretl commands 27

flush

This simple command (no arguments, no options) is intended for use in time-consuming scripts
that may be executed via the gretl GUI (it is ignored by the command-line program), to give the user
a visual indication that things are moving along and gretl is not “frozen”.

Ordinarily if you launch a script in the GUI no output is shown until its execution is completed, but
the effect of invoking flush is as follows:

• On the first invocation, gretl opens a window, displays the output so far, and appends the
message “Processing...”.

• On subsequent invocations the text shown in the output window is updated, and a new “pro-
cessing” message is appended.

When execution of the script is completed any remaining output is automatically flushed to the
text window.

Please note, there is no point in using flush in scripts that take less than (say) 5 seconds to execute.
Also note that this command should not be used at a point in the script where there is no further
output to be printed, as the “processing” message will then be misleading to the user.

The following illustrates the intended use of flush:

set echo off
scalar n = 10
loop i=1..n

do some time-consuming operation
loop 100 --quiet

a = mnormal(200,200)
b = inv(a)

endloop
print some results
printf "Iteration %2d done\n", i
if i < n

flush
endif

endloop

foreign

Syntax: foreign language=lang

Options: --send-data[=list] (pre-load data; see below)

--quiet (suppress output from foreign program)

This command opens a special mode in which commands to be executed by another program are
accepted. You exit this mode with end foreign; at this point the stacked commands are executed.

At present the “foreign” programs supported in this way are GNU R (language=R), Python, Julia,
GNU Octave (language=Octave), Jurgen Doornik’s Ox and Stata. Language names are recognized
on a case-insensitive basis.

In connection with R, Octave and Stata the --send-data option has the effect of making data from
gretl’s workspace available within the target program. By default the entire dataset is sent, but you
can limit the data to be sent by giving the name of a predefined list of series. For example:

list Rlist = x1 x2 x3
foreign language=R --send-data=Rlist

See chapter 44 of the Gretl User’s Guide for details and examples.

Chapter 1. Gretl commands 28

fractint

Arguments: series [order]

Options: --gph (do Geweke and Porter-Hudak test)

--all (do both tests)

--quiet (don’t print results)

Tests the specified series for fractional integration (“long memory”). The null hypothesis is that the
integration order of the series is zero. By default the local Whittle estimator (Robinson, 1995) is
used but if the --gph option is given the GPH test (Geweke and Porter-Hudak, 1983) is performed
instead. If the --all flag is given then the results of both tests are printed.

For details on this sort of test, see Phillips and Shimotsu (2004).

If the optional order argument is not given the order for the test(s) is set automatically as the lesser
of T/2 and T 0.6.

The estimated fractional integration orders and their standard errors are available via the $result
accessor. With the --all option, the Local Whittle estimate will be in the first row and the GPH
estimate in the second one.

The results of the test can be retrieved using the accessors $test and $pvalue. These values are
based on the Local Whittle Estimator unless the --gph option is given.

Menu path: /Variable/Unit root tests/Fractional integration

freq

Argument: var

Options: --nbins=n (specify number of bins)

--min=minval (specify minimum, see below)

--binwidth=width (specify bin width, see below)

--normal (test for the normal distribution)

--gamma (test for gamma distribution)

--silent (don’t print anything)

--matrix=name (use column of named matrix)

--plot=mode-or-filename (see below)

Examples: freq x

freq x --normal

freq x --nbins=5

freq x --min=0 --binwidth=0.10

With no options given, displays the frequency distribution for the series var (given by name or
number) in tabular form, with the number of bins and their size chosen automatically, with or
without an accompanying plot as explained below. Upon successful completion of the command,
the frequency table can be retrieved as a matrix using the $result accessor.

If the --matrix option is given, var (which must be an integer) is instead interpreted as a 1-based
index that selects a column from the named matrix. If the matrix in question is in fact a column
vector, the var argument may be omitted.

By default the frequency distribution employs an automatically calculated number of bins if the
data are continuous, or no binning if the data are discrete. To control this point you can (a) use
the discrete command to set the status of var or (b), if the data are continuous, specify either the
number of bins or the minimum value and the width of the bins, as shown in the last two examples
above. The --min option sets the lower limit of the left-most bin.

If the --normal option is given, the Doornik–Hansen chi-square test for normality is computed. If

Chapter 1. Gretl commands 29

the --gamma option is given, the test for normality is replaced by Locke’s nonparametric test for
the null hypothesis that the variable follows the gamma distribution; see Locke (1976), Shapiro and
Chen (2001). Note that the parameterization of the gamma distribution used in gretl is (shape,
scale).

By default, if gretl is not in batch mode a plot of the distribution is shown. This can be adjusted
via the --plot option. The acceptable parameters to this option are none (to suppress the plot);
display (to display a plot even when in batch mode); or a file name. The effect of providing a file
name is as described for the --output option of the gnuplot command.

The --silent flag suppresses the usual text output. This might be used in conjunction with one
or other of the distribution test options: the test statistic and its p-value are recorded, and can be
retrieved using the accessors $test and $pvalue. It might also be used along with the --plot option
if you just want a histogram and don’t care to see the accompanying text.

Note that gretl does not have a function that matches this command, but it is possible to use the
aggregate function to achieve the same purpose. In addition, the frequency distribution constructed
by freq can be obtained in matrix form via the $result accessor.

Menu path: /Variable/Frequency distribution

funcerr

Argument: [message]

Applicable only in the context of a user-defined function (see function). Causes execution of the
current function to terminate with an error condition flagged.

The optional message argument can take the form of a string literal or the name of a string variable;
if present it is printed as part of the error message shown to the caller of the function.

See also the closely related function, errorif.

function

Argument: fnname

Opens a block of statements in which a function is defined. This block must be closed with
end function. (An exception is the case when a user-defined function shall be deleted, which
is achieved by the single command line function foo delete for a function named “foo”.) See
chapter 14 of the Gretl User’s Guide for details.

garch

Arguments: p q ; depvar [indepvars]

Options: --robust (robust standard errors)

--verbose (print details of iterations)

--quiet (don’t print anything)

--vcv (print covariance matrix)

--nc (do not include a constant)

--stdresid (standardize the residuals)

--fcp (use Fiorentini, Calzolari, Panattoni algorithm)

--arma-init (initial variance parameters from ARMA)

Examples: garch 1 1 ; y

garch 1 1 ; y 0 x1 x2 --robust

See also garch.inp, sw_ch14.inp

Chapter 1. Gretl commands 30

Estimates a GARCH model (GARCH = Generalized Autoregressive Conditional Heteroskedasticity),
either a univariate model or, if indepvars are specified, including the given exogenous variables.
The integer values p and q (which may be given in numerical form or as the names of pre-existing
scalar variables) represent the lag orders in the conditional variance equation:

ht = α0 +
q∑
i=1

αiε2
t−i +

p∑
j=1

βjht−j

The parameter p therefore represents the Generalized (or “AR”) order, while q represents the reg-
ular ARCH (or “MA”) order. If p is non-zero, q must also be non-zero otherwise the model is
unidentified. However, you can estimate a regular ARCH model by setting q to a positive value and
p to zero. The sum of p and q must be no greater than 5. Note that a constant is automatically
included in the mean equation unless the --nc option is given.

By default native gretl code is used in estimation of GARCH models, but you also have the option
of using the algorithm of Fiorentini et al. (1996). The former uses the BFGS maximizer while the
latter uses the information matrix to maximize the likelihood, with fine-tuning via the Hessian.

Several variant estimators of the covariance matrix are available with this command. By default,
the Hessian is used unless the --robust option is given, in which case the QML (White) covari-
ance matrix is used. Other possibilities (e.g. the information matrix, or the Bollerslev–Wooldridge
estimator) can be specified via the garch_vcv keyword under the set command.

By default, the estimates of the variance parameters are initialized using the unconditional error
variance from initial OLS estimation for the constant, and small positive values for the coefficients
on the past values of the squared error and the error variance. The flag --arma-init calls for the
starting values of these parameters to be set using an initial ARMA model, exploiting the relation-
ship between GARCH and ARMA set out in Chapter 21 of Hamilton’s Time Series Analysis. In some
cases this may improve the chances of convergence.

The GARCH residuals and estimated conditional variance can be retrieved as $uhat and $h respec-
tively. For example, to get the conditional variance:

series ht = $h

If the --stdresid option is given, the $uhat values are divided by the square root of ht .

Menu path: /Model/Univariate time series/GARCH

genr

Arguments: newvar = formula

NOTE: this command has undergone numerous changes and enhancements since the following help
text was written, so for comprehensive and updated info on this command you’ll want to refer to
chapter 10 of the Gretl User’s Guide. On the other hand, this help does not contain anything actually
erroneous, so take the following as “you have this, plus more”.

In the appropriate context, series, scalar, matrix, string, bundle and array are synonyms for
this command.

Creates new variables, often via transformations of existing variables. See also diff, logs, lags,
ldiff, sdiff and square for shortcuts. In the context of a genr formula, existing variables must be
referenced by name, not ID number. The formula should be a well-formed combination of variable
names, constants, operators and functions (described below). Note that further details on some
aspects of this command can be found in chapter 10 of the Gretl User’s Guide.

series c = 10

Chapter 1. Gretl commands 31

A genr command may yield either a series or a scalar result. For example, the formula x2 = x *
2 naturally yields a series if the variable x is a series and a scalar if x is a scalar. The formulae x
= 0 and mx = mean(x) naturally return scalars. Under some circumstances you may want to have
a scalar result expanded into a series or vector. You can do this by using series as an “alias” for
the genr command. For example, series x = 0 produces a series all of whose values are set to
0. You can also use scalar as an alias for genr. It is not possible to coerce a vector result into
a scalar, but use of this keyword indicates that the result should be a scalar: if it is not, an error
occurs.

When a formula yields a series result, the range over which the result is written to the target variable
depends on the current sample setting. It is possible, therefore, to define a series piecewise using
the smpl command in conjunction with genr.

Supported arithmetical operators are, in order of precedence: ^ (exponentiation); *, / and % (mod-
ulus or remainder); + and -.

The available Boolean operators are (again, in order of precedence): ! (negation), && (logical AND),
|| (logical OR), >, <, == (is equal to), >= (greater than or equal), <= (less than or equal) and != (not
equal). The Boolean operators can be used in constructing dummy variables: for instance (x >
10) returns 1 if x > 10, 0 otherwise.

Built-in constants are pi and NA. The latter is the missing value code: you can initialize a variable
to the missing value with scalar x = NA.

The genr command supports a wide range of mathematical and statistical functions, including
all the common ones plus several that are special to econometrics. In addition it offers access to
numerous internal variables that are defined in the course of running regressions, doing hypothesis
tests, and so on.

For a listing of functions and accessors, see Chapter 2.

Besides the operators and functions noted above there are some special uses of genr:

• genr time creates a time trend variable (1,2,3,. . .) called time. genr index does the same
thing except that the variable is called index.

• genr dummy creates dummy variables up to the periodicity of the data. In the case of quarterly
data (periodicity 4), the program creates dq1 = 1 for first quarter and 0 in other quarters, dq2
= 1 for the second quarter and 0 in other quarters, and so on. With monthly data the dummies
are named dm1, dm2, and so on; with daily data they are named dd1, dd2, and so on; and with
other frequencies the names are dummy_1, dummy_2, etc.

• genr unitdum and genr timedum create sets of special dummy variables for use with panel
data. The first codes for the cross-sectional units and the second for the time period of the
observations.

Note: In the command-line program, genr commands that retrieve model-related data always ref-
erence the model that was estimated most recently. This is also true in the GUI program, if one
uses genr in the “gretl console” or enters a formula using the “Define new variable” option under
the Add menu in the main window. With the GUI, however, you have the option of retrieving data
from any model currently displayed in a window (whether or not it’s the most recent model). You
do this under the “Save” menu in the model’s window.

The special variable obs serves as an index of the observations. For instance series dum =
(obs==15) will generate a dummy variable that has value 1 for observation 15, 0 otherwise. You
can also use this variable to pick out particular observations by date or name. For example, series
d = (obs>1986:4), series d = (obs>"2008-04-01"), or series d = (obs=="CA"). If daily
dates or observation labels are used in this context, they should be enclosed in double quotes.
Quarterly and monthly dates (with a colon) may be used unquoted. Note that in the case of annual
time series data, the year is not distinguishable syntactically from a plain integer; therefore if you

Chapter 1. Gretl commands 32

wish to compare observations against obs by year you must use the function obsnum to convert the
year to a 1-based index value, as in series d = (obs>obsnum(1986)).

Scalar values can be pulled from a series in the context of a genr formula, using the syntax var-
name[obs]. The obs value can be given by number or date. Examples: x[5], CPI[1996:01]. For
daily data, the form YYYY-MM-DD should be used, e.g. ibm[1970-01-23].

An individual observation in a series can be modified via genr. To do this, a valid observation
number or date, in square brackets, must be appended to the name of the variable on the left-hand
side of the formula. For example, genr x[3] = 30 or genr x[1950:04] = 303.7.

Table 1.1: Examples of use of genr command
Formula Comment

y = x1^3 x1 cubed

y = ln((x1+x2)/x3)

z = x>y z(t) = 1 if x(t) > y(t), otherwise 0

y = x(-2) x lagged 2 periods

y = x(+2) x led 2 periods

y = diff(x) y(t) = x(t) - x(t-1)

y = ldiff(x) y(t) = log x(t) - log x(t-1), the instantaneous rate of growth of
x

y = sort(x) sorts x in increasing order and stores in y

y = dsort(x) sort x in decreasing order

y = int(x) truncate x and store its integer value as y

y = abs(x) store the absolute values of x

y = sum(x) sum x values excluding missing NA entries

y = cum(x) cumulation: yt =
∑t
τ=1 xτ

aa = $ess set aa equal to the Error Sum of Squares from last regression

x = $coeff(sqft) grab the estimated coefficient on the variable sqft from the last regres-
sion

rho4 = $rho(4) grab the 4th-order autoregressive coefficient from the last model (pre-
sumes an ar model)

cvx1x2 = $vcv(x1, x2) grab the estimated coefficient covariance of vars x1 and x2 from the last
model

foo = uniform() uniform pseudo-random variable in range 0–1

bar = 3 * normal() normal pseudo-random variable, µ = 0, σ = 3

samp = ok(x) = 1 for observations where x is not missing.

Menu path: /Add/Define new variable

Other access: Main window pop-up menu

gmm

Options: --two-step (two step estimation)

--iterate (iterated GMM)

--vcv (print covariance matrix)

--verbose (print details of iterations)

--quiet (don’t print anything)

--lbfgs (use L-BFGS-B instead of regular BFGS)

Example: hall_cbapm.inp

Performs Generalized Method of Moments (GMM) estimation using the BFGS (Broyden, Fletcher,

Chapter 1. Gretl commands 33

Goldfarb, Shanno) algorithm. You must specify one or more commands for updating the relevant
quantities (typically GMM residuals), one or more sets of orthogonality conditions, an initial matrix
of weights, and a listing of the parameters to be estimated, all enclosed between the tags gmm and
end gmm. Any options should be appended to the end gmm line.

Please see chapter 27 of the Gretl User’s Guide for details on this command. Here we just illustrate
with a simple example.

gmm e = y - X*b
orthog e ; W
weights V
params b

end gmm

In the example above we assume that y and X are data matrices, b is an appropriately sized vector of
parameter values, W is a matrix of instruments, and V is a suitable matrix of weights. The statement

orthog e ; W

indicates that the residual vector e is in principle orthogonal to each of the instruments composing
the columns of W.

Parameter names

In estimating a nonlinear model it is often convenient to name the parameters tersely. In printing
the results, however, it may be desirable to use more informative labels. This can be achieved via
the additional keyword param_names within the command block. For a model with k parameters
the argument following this keyword should be a double-quoted string literal holding k space-
separated names, the name of a string variable that holds k such names, or the name of an array
of k strings.

Menu path: /Model/Instrumental variables/GMM

Chapter 1. Gretl commands 34

gnuplot

Arguments: yvars xvar [dumvar]

Options: --with-lines[=varspec] (use lines, not points)

--with-lp[=varspec] (use lines and points)

--with-impulses[=varspec] (use vertical lines)

--with-steps[=varspec] (use perpendicular line segments)

--time-series (plot against time)

--single-yaxis (force use of just one y-axis)

--y2axis=yvar (put specified variable on second y-axis)

--ylogscale[=base] (use log scale for vertical axis)

--control (see below)

--dummy (see below)

--fit=fitspec (see below)

--font=fontspec (see below)

--band=bandspec (see below)

--matrix=name (plot columns of named matrix)

--output=filename (send output to specified file)

--outbuf=stringname (send output to specified string)

--input=filename (take input from specified file)

--inbuf=stringname (take input from specified string)

Examples: gnuplot y1 y2 x

gnuplot x --time-series --with-lines

gnuplot wages educ gender --dummy

gnuplot y x --fit=quadratic

gnuplot y1 y2 x --with-lines=y2

The series in the list yvars are graphed against xvar. For a time series plot you may either give time
as xvar or use the option flag --time-series. See also the plot and panplot commands.

By default, data-points are shown as points; this can be overridden by giving one of the options
--with-lines, --with-lp (lines and points), --with-impulses or --with-steps. If more than
one variable is to be plotted on the y axis, the effect of these options may be confined to a subset
of the variables by using the varspec parameter. This should take the form of a comma-separated
listing of the names or numbers of the variables to be plotted with lines or impulses respectively.
For instance, the final example above shows how to plot y1 and y2 against x, such that y2 is
represented by a line but y1 by points.

When yvars contains more than one variable it may be preferable to use two y axes (left and right).
By default this is handled automatically, via a heuristic based on the relative scales of the vari-
ables, but two (mutually exclusive) options can be used to override the default. As you’d expect,
--single-yaxis prevents use of a second axis, while --y2axis=yvar specifies that a selected
variable (only) be plotted relative to a second axis.

If the --dummy option is selected, exactly three variables should be given: a single y variable, an x
variable, and dvar, a discrete variable. The effect is to plot yvar against xvar with the points shown
in different colors depending on the value of dvar at the given observation.

The --control option is similar, in that exactly three variables should be given: a single y variable
and two “explanatory” variables x and z. The effect is to plot y against x controlling for z. Such
plot can be useful to visualize the relationship between x and y , taking into account the effect that
z can have on both. Statistically, this would be equivalent to a regression of y on x and z.

You can specify the scale for the y axis as logarithmic rather than linear by using the --ylogscale

Chapter 1. Gretl commands 35

option, together with a base parameter. For example,

gnuplot y x --ylogscale=2

plots the data such that the vertical axis is expressed as powers of 2. If the base is omitted, it
defaults to 10.

Taking data from a matrix

In the primary case the arguments yvars and xvar are required, and refer to series in the current
dataset (given either by name or ID number). But if a named matrix is supplied via the --matrix
option these arguments become optional: if the specified matrix has k columns, by default the first
k − 1 columns are treated as the yvars and the last column as xvar. But if the --time-series
option is given all k columns are plotted against time. If you wish to plot selected columns of the
matrix, you should specify yvars and xvar in the form of 1-based column numbers. For example if
you want a scatterplot of column 2 of matrix M against column 1, you can do:

gnuplot 2 1 --matrix=M

Showing a line of best fit

The --fit option is applicable only for bivariate scatterplots and single time-series plots. The
default behavior for a scatterplot is to show the OLS fit if the slope coefficient is significant at the
10 percent level, while the default behavior for time-series is not to show any fitted line. You can
call for different behavior by using this option along with one of the following fitspec parameter
values. Note that if the plot is a single time series the place of x is taken by time.

• linear: show the OLS fit regardless of its level of statistical significance.

• none: don’t show any fitted line.

• inverse, quadratic, cubic, semilog or linlog: show a fitted line based on a regression of
the specified type. By semilog, we mean a regression of log y on x; the fitted line represents
the conditional expectation of y , obtained by exponentiation. By linlog we mean a regression
of y on the log of x.

• loess: show the fit from a robust locally weighted regression (also is sometimes known as
“lowess”).

Plotting a band

The --band option can be used for plotting a “band” of some sort (typically representing a con-
fidence interval) along with other data. The recommended way of specifying such a band is via a
bundle, whose name is given as a parameter to the option. A band bundle has two required ele-
ments: under the key center, the name of a series for the center of the band, and under the key
width the name of a series representing the width of the band—both being given as quoted strings.
In addition four optional elements are supported, as follows.

• Under the key factor, a scalar giving a factor by which width should be multiplied (the default
value being 1).

• Under the key style, a string to specify how the band is represented, which must be one of
line (the default) fill, dash, bars or step.

• Under the key color, a color for the band, either as a string holding a gnuplot color name
or as a hexadecimal RGB representation (given as a string or a scalar). By default the color is
selected automatically.

Chapter 1. Gretl commands 36

• Under the key title, a title for the band, to appear in the key or legend of the plot. By default
bands are untitled.

Note that you can access the list of color names recognized by gnuplot by issuing the command
“show colornames” in gnuplot itself, or in the gretl console by doing

eval readfile("@gretldir/data/gnuplot/gpcolors.txt")

Here are two examples of usage, employing the shorthand syntax _() for defining a bundle. The
first just satisfies the minimum requirement while the second exercises all three options. We as-
sume that y, x and w are all series in the current dataset.

bundle b1 = _(center="x", width="w")
gnuplot y --time-series --with-lines --band=b1
bundle b2 = _(center="x", width="w", factor=1.96, style="fill")
b2.color=0xcccccc
b2.title = "95% interval"
gnuplot y --time-series --with-lines --band=b2

If the plot is to contain two or more such bands, the option flag should be given in the plural and its
parameter must be the name of an array of bundles, as in (following on from the example above):

bundles bb = defarray(b1, b2)
gnuplot y --time-series --with-lines --bands=bb

When plotting matrix rather than series data, the only difference is that the center and width
elements of the band bundle are replaced by a single element under the key bandmat; this should
be the quoted name of a two-column matrix with the center in column 1 and the width in column
2.

Legacy band syntax

The syntax described above was introduced in gretl 2023c. Prior to that release only one band
could be specified per plot and the syntax was somewhat different. The old approach, which is
still accepted until further notice, split the band details over two options. First, the --band option
required as parameter the names of two series, separated by a comma, giving center and width. The
multiplicative factor for the width could be added as a third comma-separated term. Examples:

gnuplot ... --band=x,w
gnuplot ... --band=x,w,1.96

A second option, --band-style, accepted one or both of the style and color specifiers, in that
order and again separated by a comma, as in these examples.

gnuplot ... --band-style=fill
gnuplot ... --band-style=dash,0xbbddff
gnuplot ... --band-style=,black
gnuplot ... --band-style=bars,blue

Recession bars

The “band” option can also be used to add “recession bars” to a plot. By this we mean vertical bars
occupying the full y-dimension of the plot and indicating the presence (bar) or absence (no bar)
of some qualitative feature in a time-series plot. Such bars are commonly used to flag periods of

Chapter 1. Gretl commands 37

recession; they could also be used to indicate periods of war, or anything that can be coded in a
0/1 dummy variable.

In this context the band bundle has a single required element: under the key dummy, the quoted
name of a 0/1 series (or in the case of matrix data, the quoted name of a suitable column vector).
The vertical bars will be “on” for observations where this series or vector has value 1 and “off”
when it’s 0. The center, width, factor and style keys are not relevant, but color can be used.
Note that only one such specification can be used per plot. Here’s an example:

open AWM17 --quiet
series dum = obs >= 1990:1 && obs <= 1994:2
bundle b = _(dummy="dum", color=0xcccccc)
gnuplot YER URX --with-lines --time-series \
--band=b --output=display {set key top left;}

Controlling the output

In interactive mode the plot is displayed immediately. In batch mode the default behavior is that
a gnuplot command file is written in the user’s working directory, with a name on the pattern
gpttmpN.plt, starting with N = 01. The actual plots may be generated later using gnuplot (under MS
Windows, wgnuplot). This behavior can be modified by use of the --output=filename option. This
option controls the filename used, and at the same time allows you to specify a particular output
format via the three-letter extension of the file name, as follows: .eps results in the production of
an Encapsulated PostScript (EPS) file; .pdf produces PDF; .png produces PNG format, .emf calls
for EMF (Enhanced MetaFile), .fig calls for an Xfig file, .svg for SVG (Scalable Vector Graphics) and
.html for an HTML canvas. If the dummy filename “display” is given then the plot is shown on
screen as in interactive mode. If a filename with any extension other than those just mentioned is
given, a gnuplot command file is written.

An alternative means of directing output is the --outbuf=stringname option. This writes gnu-
plot commands to the named string or “buffer”. Note that --output and --outbuf are mutually
incompatible.

Specifying a font

The --font option can be used to specify a particular font for the plot. The fontspec parameter
should take the form of the name of a font, optionally followed by a size in points separated from
the name by a comma or space, all wrapped in double quotes, as in

--font="serif,12"

Note that the fonts available to gnuplot will vary by platform, and if you’re writing a plot command
that is intended to be portable it is best to restrict the font name to the generic sans or serif.

Adding gnuplot commands

A further option to this command is available: following the specification of the variables to be plot-
ted and the option flag (if any), you may add literal gnuplot commands to control the appearance
of the plot (for example, setting the plot title and/or the axis ranges). These commands should be
enclosed in braces, and each gnuplot command must be terminated with a semi-colon. A backslash
may be used to continue a set of gnuplot commands over more than one line. Here is an example
of the syntax:

{ set title ’My Title’; set yrange [0:1000]; }

Menu path: /View/Graph specified vars

Other access: Main window pop-up menu, graph button on toolbar

Chapter 1. Gretl commands 38

graphpg

Variants: graphpg add

graphpg fontscale value

graphpg show

graphpg free

graphpg --output=filename

The session “graph page” will work only if you have the LATEX typesetting system installed, and are
able to generate and view PDF or PostScript output.

In the session icon window, you can drag up to eight graphs onto the graph page icon. When you
double-click on the graph page (or right-click and select “Display”), a page containing the selected
graphs will be composed and opened in a suitable viewer. From there you should be able to print
the page.

To clear the graph page, right-click on its icon and select “Clear”.

Note that on systems other than MS Windows, you may have to adjust the setting for the program
used to view PDF or PostScript files. Find that under the “Programs” tab in the gretl Preferences
dialog box (under the Tools menu in the main window).

It’s also possible to operate on the graph page via script, or using the console (in the GUI program).
The following commands and options are supported:

To add a graph to the graph page, issue the command graphpg add after saving a named graph,
as in

grf1 <- gnuplot Y X
graphpg add

To display the graph page: graphpg show.

To clear the graph page: graphpg free.

To adjust the scale of the font used in the graph page, use graphpg fontscale scale, where scale
is a multiplier (with a default of 1.0). Thus to make the font size 50 percent bigger than the default
you can do

graphpg fontscale 1.5

To call for printing of the graph page to file, use the flag --output= plus a filename; the filename
should have the suffix “.pdf”, “.ps” or “.eps”. For example:

graphpg --output="myfile.pdf"

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

In this context the output uses colored lines by default; to use dot/dash patterns instead of colors
you can append the --monochrome flag.

Chapter 1. Gretl commands 39

gridplot

Argument: plotspecs

Options: --fontsize=fs (font size in points [10])

--width=w (width of plot in pixels [800])

--height=h (height of plot in pixels [600])

--title=quoted string (add an overall title)

--rows=r (see below)

--cols=c (see below)

--layout=lmat (see below)

--output=destination (see below)

--outbuf=alternative destination (see below)

Examples: gridplot myspecs --rows=3 --output=display

gridplot myspecs --layout=lmat --output=composite.pdf

This command takes two or more individual plot specifications and arranges them in a grid to
produce a composite plot. The single required argument, plotspecs, takes the form of an array of
strings, each specifying a plot. The companion command gpbuild offers an easy way of creating
such an array.

Specifying the grid

The shape of the grid can be set by any one of the three mutually incompatible options --rows,
--cols and --layout. If no such option is given the number of rows is set to the square root of the
number of plots (the size of the input array), rounded up to the nearest integer if necessary. Then
the number of columns is set to the number of plots divided by the number of rows, again rounded
up if necessary. The plots are placed in the grid by row, in their array order. If the --rows option is
given this takes the place of the automatic setting, but the number of columns is set automatically
as described above. If the --cols option is given instead, the number of rows is set automatically.

The --layout option, which requires a matrix parameter, offers a more flexible alternative. The
matrix specifies the grid layout thus: 0 elements call for empty cells in the grid, and integer ele-
ments 1 to n refer to the subplots in their array order. So for example,

matrix m = {1,0,0; 2,3,0; 4,5,6}
gridplot ... --layout=m ...

calls for a lower-triangular layout of six plots in a 3× 3 grid. Using this option one can omit some
subplots, or even repeat some.

Output options

The --output option can be used to specify display (show the plot immediately) or the name
of an output file. Alternatively --outbuf can be used to direct output, in the form of a gnuplot
commands buffer, to a named string. In the absence of these options the output is an automatically
named gnuplot command file. See gnuplot for details.

gpbuild

Argument: plotspecs

Example: gpbuild MyPlots

This command starts a block in which any commands or function calls which produce plots are
treated specially, in order to produce an array of plot-specification strings for use with gridplot: the
plotspecs argument supplies the name for this array. Such a block is terminated by the command
“end gpbuild”.

Chapter 1. Gretl commands 40

Two restrictions

Within a gpbuild block only plotting commands get special treatment; all other commands are
executed normally. There are just two restrictions to note.

• Plotting commands should not include an output specification in this context, since that
would conflict with the automatic redirection of output to the plotspecs array. An excep-
tion to this rule is allowed for --output=display (which is quite common as the default in
plot-related function packages); this directive is silently ignored in favour of the automatic
treatment.

• Plots that invoke gnuplot’s “multiplot” directive are not suitable for inclusion in a gpbuild
block. That is because gridplot employs multiplot internally, and these constructs cannot
be nested.

Manual alternative

It is possible to prepare an array of plot specifications for use with gridplot without using a
gpbuild block, as in the following example:

open data4-10
strings MyPlots = array(3)
gnuplot ENROLL CATHOL --outbuf=MyPlots[1]
gnuplot ENROLL INCOME --outbuf=MyPlots[2]
gnuplot ENROLL COLLEGE --outbuf=MyPlots[3]

The above is essentially equivalent to

open data4-10
gpbuild MyPlots

gnuplot ENROLL CATHOL
gnuplot ENROLL INCOME
gnuplot ENROLL COLLEGE

end gpbuild

heckit

Arguments: depvar indepvars ; selection equation

Options: --quiet (suppress printing of results)

--two-step (perform two-step estimation)

--vcv (print covariance matrix)

--opg (OPG standard errors)

--robust (QML standard errors)

--cluster=clustvar (see logit for explanation)

--verbose (print extra output)

Example: heckit y 0 x1 x2 ; ys 0 x3 x4

heckit.inp

Heckman-type selection model. In the specification, the list before the semicolon represents the
outcome equation, and the second list represents the selection equation. The dependent variable
in the selection equation (ys in the example above) must be a binary variable.

By default, the parameters are estimated by maximum likelihood. The covariance matrix of the
parameters is computed using the negative inverse of the Hessian. If two-step estimation is desired,
use the --two-step option. In this case, the covariance matrix of the parameters of the outcome
equation is appropriately adjusted as per Heckman (1979).

Menu path: /Model/Limited dependent variable/Heckit

Chapter 1. Gretl commands 41

help

Variants: help

help functions

help command

help function

Option: --func (select functions help)

If no arguments are given, prints a list of available commands. If the single argument functions
is given, prints a list of available functions (see genr).

help command describes command (e.g. help smpl). help function describes function (e.g. help
ldet). Some functions have the same names as related commands (e.g. diff): in that case the
default is to print help for the command, but you can get help on the function by using the --func
option.

Menu path: /Help

hfplot

Arguments: hflist [; lflist]

Options: --with-lines (plot with lines)

--time-series (put time on x-axis)

--output=filename (send output to specified file)

Provides a means of plotting a high-frequency series, possibly along with one or more series ob-
served at the base frequency of the dataset. The first argument should be a MIDAS list; the optional
additional lflist terms, following a semicolon, should be regular (“low-frequency”) series.

For details on the effect of the --output option, please see the gnuplot command.

hsk

Arguments: depvar indepvars

Options: --no-squares (see below)

--vcv (print covariance matrix)

--quiet (don’t print anything)

This command is applicable where heteroskedasticity is present in the form of an unknown func-
tion of the regressors which can be approximated by a quadratic relationship. In that context
it offers the possibility of consistent standard errors and more efficient parameter estimates as
compared with OLS.

The procedure involves (a) OLS estimation of the model of interest, followed by (b) an auxiliary
regression to generate an estimate of the error variance, then finally (c) weighted least squares,
using as weight the reciprocal of the estimated variance.

In the auxiliary regression (b) we regress the log of the squared residuals from the first OLS on
the original regressors and their squares (by default), or just on the original regressors (if the
--no-squares option is given). The log transformation is performed to ensure that the estimated
variances are all non-negative. Call the fitted values from this regression u∗. The weight series for
the final WLS is then formed as 1/exp(u∗).

Menu path: /Model/Other linear models/Heteroskedasticity corrected

hurst

Argument: series

Option: --plot=mode-or-filename (see below)

Chapter 1. Gretl commands 42

Calculates the Hurst exponent (a measure of persistence or long memory) for a time-series variable
having at least 128 observations. The result (together with its standard error) can be retrieved via
the $result accessor.

The Hurst exponent is discussed by Mandelbrot (1983). In theoretical terms it is the exponent, H,
in the relationship

RS(x) = anH

where RS is the “rescaled range” of the variable x in samples of size n and a is a constant. The
rescaled range is the range (maximum minus minimum) of the cumulated value or partial sum of
x over the sample period (after subtraction of the sample mean), divided by the sample standard
deviation.

As a reference point, if x is white noise (zero mean, zero persistence) then the range of its cumu-
lated “wandering” (which forms a random walk), scaled by the standard deviation, grows as the
square root of the sample size, giving an expected Hurst exponent of 0.5. Values of the exponent
significantly in excess of 0.5 indicate persistence, and values less than 0.5 indicate anti-persistence
(negative autocorrelation). In principle the exponent is bounded by 0 and 1, although in finite
samples it is possible to get an estimated exponent greater than 1.

In gretl, the exponent is estimated using binary sub-sampling: we start with the entire data range,
then the two halves of the range, then the four quarters, and so on. For sample sizes smaller
than the data range, the RS value is the mean across the available samples. The exponent is then
estimated as the slope coefficient in a regression of the log of RS on the log of sample size.

By default, if gretl is not in batch mode a plot of the rescaled range is shown. This can be adjusted
via the --plot option. The acceptable parameters to this option are none (to suppress the plot);
display (to display a plot even when in batch mode); or a file name. The effect of providing a file
name is as described for the --output option of the gnuplot command.

Menu path: /Variable/Hurst exponent

if

Flow control for command execution. Three sorts of construction are supported, as follows.

simple form
if condition

commands
endif

two branches
if condition

commands1
else

commands2
endif

three or more branches
if condition1

commands1
elif condition2

commands2
else

commands3
endif

condition must be a Boolean expression, for the syntax of which see genr. More than one elif
block may be included. In addition, if . . . endif blocks may be nested.

Chapter 1. Gretl commands 43

include

Argument: filename

Option: --force (force re-reading from file)

Examples: include myfile.inp

include sols.gfn

Intended for use in a command script, primarily for including definitions of functions. filename
should have the extension inp (a plain-text script) or gfn (a gretl function package). The commands
in filename are executed then control is returned to the main script.

The --force option is specific to gfn files: its effect is to force gretl to re-read the function package
from file even if it is already loaded into memory. (Plain inp files are always read and processed in
response to this command.)

See also run.

info

Variants: info

info --to-file=filename

info --from-file=filename

In its basic form, displays any supplementary information (metadata) stored with the current
datafile. Otherwise, writes this information to file (with the --to-file option), or reads meta-
data from a specified file and attaches it to the current dataset (with --from-file, in which case
the text should be valid UTF-8).

Menu path: /Data/Dataset info

intreg

Arguments: minvar maxvar indepvars

Options: --quiet (suppress printing of results)

--verbose (print details of iterations)

--robust (robust standard errors)

--opg (see below)

--cluster=clustvar (see logit for explanation)

Example: intreg lo hi const x1 x2

wtp.inp

Estimates an interval regression model. This model arises when the dependent variable is imper-
fectly observed for some (possibly all) observations. In other words, the data generating process is
assumed to be

y∗t = xtβ+ ϵt
but we only observe

mt ≤ yt ≤ Mt
(the interval may be left- or right-unbounded). Note that for some observations m may equal M .
The variables minvar and maxvar must contain NAs for left- and right-unbounded observations,
respectively.

The model is estimated by maximum likelihood, assuming normality of the disturbance term.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber–White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer

Chapter 1. Gretl commands 44

product of the gradient. Alternatively, the --opg option can be given, in which case standard errors
are based on the outer product of the gradient alone.

Menu path: /Model/Limited dependent variable/Interval regression

johansen

Arguments: order ylist [; xlist] [; rxlist]

Options: --nc (no constant)

--rc (restricted constant)

--uc (unrestricted constant)

--crt (constant and restricted trend)

--ct (constant and unrestricted trend)

--seasonals (include centered seasonal dummies)

--asy (record asymptotic p-values)

--quiet (print just the tests)

--silent (don’t print anything)

--verbose (print details of auxiliary regressions)

Examples: johansen 2 y x

johansen 4 y x1 x2 --verbose

johansen 3 y x1 x2 --rc

See also hamilton.inp, denmark.inp

Carries out the Johansen test for cointegration among the variables in ylist for the given lag order.
For details of this test see chapter 33 of the Gretl User’s Guide or Hamilton (1994), Chapter 20.
P-values are computed via Doornik’s gamma approximation (Doornik, 1998). Two sets of p-values
are shown for the trace test, straight asymptotic values and values adjusted for the sample size. By
default the $pvalue accessor gets the adjusted variant, but the --asy flag may be used to record
the asymptotic values instead.

The inclusion of deterministic terms in the model is controlled by the option flags. The default if
no option is specified is to include an “unrestricted constant”, which allows for the presence of a
non-zero intercept in the cointegrating relations as well as a trend in the levels of the endogenous
variables. In the literature stemming from the work of Johansen (see for example his 1995 book)
this is often referred to as “case 3”. The first four options given above, which are mutually exclusive,
produce cases 1, 2, 4 and 5 respectively. The meaning of these cases and the criteria for selecting
a case are explained in chapter 33 of the Gretl User’s Guide.

The optional lists xlist and rxlist allow you to control for specified exogenous variables: these enter
the system either unrestrictedly (xlist) or restricted to the cointegration space (rxlist). These lists
are separated from ylist and from each other by semicolons.

The --seasonals option, which may be combined with any of the other options, specifies the
inclusion of a set of centered seasonal dummy variables. This option is available only for quarterly
or monthly data.

The following table is offered as a guide to the interpretation of the results shown for the test,
for the 3-variable case. H0 denotes the null hypothesis, H1 the alternative hypothesis, and c the
number of cointegrating relations.

Chapter 1. Gretl commands 45

Trace test λ-max test

Rank H0 H1 H0 H1

0 c = 0 c = 3 c = 0 c = 1

1 c = 1 c = 3 c = 1 c = 2

2 c = 2 c = 3 c = 2 c = 3

See also the vecm command, and coint if you want the Engle–Granger cointegration test.

Menu path: /Model/Multivariate time series

join

Arguments: filename varname

Options: --data=column-name (see below)

--filter=expression (see below)

--ikey=inner-key (see below)

--okey=outer-key (see below)

--aggr=method (see below)

--tkey=column-name,format-string (see below)

--verbose (report on progress)

This command imports one or more data series from the source filename (which must be either a
delimited text data file or a “native” gretl data file) under the name varname. For details please see
chapter 7 of the Gretl User’s Guide; here we just give a brief summary of the available options. See
also append for simpler joining operations.

The --data option can be used to specify the column heading of the data in the source file, if this
differs from the name by which the data should be known in gretl.

The --filter option can be used to specify a criterion for filtering the source data (that is, selecting
a subset of observations).

The --ikey and --okey options can be used to specify a mapping between observations in the cur-
rent dataset and observations in the source data (for example, individuals can be matched against
the household to which they belong).

The --aggr option is used when the mapping between observations in the current dataset and the
source is not one-to-one.

The --tkey option is applicable only when the current dataset has a time-series structure. It can
be used to specify the name of a column containing dates to be matched to the dataset and/or the
format in which dates are represented in that column.

Importing more than one series at once

The join command can handle the importation of several series at once. This happens when (a)
the varname argument is a space-separated list of names rather than a single name, or (b) when it
points to an array of strings: the elements of this array should be the names of the series to import.

This methods has some limitations, however: the --data option is not available. When importing
multiple series you are obliged to accept their “outer” names. The other options apply uniformly
to all the series imported via a given command.

Chapter 1. Gretl commands 46

kdplot

Argument: y

Options: --alt (use Epanechnikov kernel)

--scale=s (scale factor for bandwidth)

--output=filename (send plot to specified file)

Plots a kernel density estimate for the series y. By default the kernel is Gaussian but if the --alt
flag is given the Epanechnikov kernel is used. The degree of smoothing can be adjusted via the
--scale option, which has a default value of 1.0 (higher values of s produce a smoother result).

The option --output has the effect of sending the output to the specified file; use “display” to
force output to the screen. See the gnuplot command for more detail on this option.

For a more flexible means of generating kernel density estimates, with the option of retrieving the
result as a matrix, see the kdensity function.

Menu path: /Variable/Estimated density plot

kpss

Arguments: order varlist

Options: --trend (include a trend)

--seasonals (include seasonal dummies)

--verbose (print regression results)

--quiet (suppress printing of results)

--difference (use first difference of variable)

Examples: kpss 8 y

kpss 4 x1 --trend

For use of this command with panel data please see the final section in this entry.

Computes the KPSS test (Kwiatkowski et al., 1992) for stationarity, for each of the specified variables
(or their first difference, if the --difference option is selected). The null hypothesis is that the
variable in question is stationary, either around a level or, if the --trend option is given, around a
deterministic linear trend.

The order argument determines the size of the window used for Bartlett smoothing. If a negative
value is given this is taken as a signal to use an automatic window size of 4(T/100)0.25, where T is
the sample size.

If the --verbose option is chosen the results of the auxiliary regression are printed, along with the
estimated variance of the random walk component of the variable.

The critical values shown for the test statistic are based on response surfaces estimated in the
manner set out by Sephton (1995), which are more accurate for small samples than the values given
in the original KPSS article. When the test statistic lies between the 10 percent and 1 percent critical
values a p-value is shown; this is obtained by linear interpolation and should not be taken too
literally. See the kpsscrit function for a means of obtaining these critical values programmatically.

Panel data

When the kpss command is used with panel data, to produce a panel unit root test, the applicable
options and the results shown are somewhat different. While you may give a list of variables
for testing in the regular time-series case, with panel data only one variable may be tested per
command. And the --verbose option has a different meaning: it produces a brief account of the
test for each individual time series (the default being to show only the overall result).

When possible, the overall test (null hypothesis: the series in question is stationary for all the

Chapter 1. Gretl commands 47

panel units) is calculated using the method of Choi (2001). This is not always straightforward, the
difficulty being that while the Choi test is based on the p-values of the tests on the individual series,
we do not currently have a means of calculating p-values for the KPSS test statistic; we must rely
on a few critical values.

If the test statistic for a given series falls between the 10 percent and 1 percent critical values, we
are able to interpolate a p-value. But if the test falls short of the 10 percent value, or exceeds the 1
percent value, we cannot interpolate and can at best place a bound on the global Choi test. If the
individual test statistic falls short of the 10 percent value for some units but exceeds the 1 percent
value for others, we cannot even compute a bound for the global test.

Menu path: /Variable/Unit root tests/KPSS test

labels

Variants: labels [varlist]

labels --to-file=filename

labels --from-file=filename

labels --delete

Example: oprobit.inp

In the first form, prints out the informative labels (if present) for the series in varlist, or for all
series in the dataset if varlist is not specified.

With the option --to-file, writes to the named file the labels for all series in the dataset, one
per line. If no labels are present an error is flagged; if some series have labels and others do not,
a blank line is printed for series with no label. The output file will be written in the currently set
workdir, unless the filename string contains a full path specification.

With the option --from-file, reads the specified file (which should be plain text) and assigns
labels to the series in the dataset, reading one label per line and taking blank lines to indicate blank
labels.

The --delete option does what you’d expect: it removes all the series labels from the dataset.

Menu path: /Data/Variable labels

lad

Arguments: depvar indepvars

Options: --vcv (print covariance matrix)

--no-vcv (don’t compute covariance matrix)

--quiet (don’t print anything)

Calculates a regression that minimizes the sum of the absolute deviations of the observed from
the fitted values of the dependent variable. Coefficient estimates are derived using the Barrodale–
Roberts simplex algorithm; a warning is printed if the solution is not unique.

Standard errors are derived using the bootstrap procedure with 500 drawings. The covariance
matrix for the parameter estimates, printed when the --vcv flag is given, is based on the same
bootstrap. Since this is quite an expensive operation, the --no-vcv option is provided for the case
where the covariance matrix is not required; when this option is given standard errors will not be
available.

Note that this method can be slow when the sample is large or there are many regressors; in that
case it may be preferable to use the quantreg command. Given a dependent variable y and a list
of regressors X, the following commands are basically equivalent, except that the quantreg method
uses the faster Frisch–Newton algorithm and provides analytical rather than bootstrapped standard
errors.

Chapter 1. Gretl commands 48

lad y const X
quantreg 0.5 y const X

Menu path: /Model/Robust estimation/Least Absolute Deviation

lags

Arguments: [order ;] laglist

Option: --bylag (order terms by lag)

Examples: lags x y

lags 12 ; x y

lags 4 ; x1 x2 x3 --bylag

See also sw_ch12.inp, sw_ch14.inp

Creates new series which are lagged values of each of the series in varlist. By default the number of
lags created equals the periodicity of the data. For example, if the periodicity is 4 (quarterly), the
command lags x creates

x_1 = x(t-1)
x_2 = x(t-2)
x_3 = x(t-3)
x_4 = x(t-4)

The number of lags created can be controlled by the optional first parameter (which, if present,
must be followed by a semicolon).

The --bylag option is meaningful only if varlist contains more than one series and the maximum
lag order is greater than 1. By default the lagged terms are added to the dataset by variable: first
all lags of the first series, then all lags of the second series, and so on. But if --bylag is given, the
ordering is by lags: first lag 1 of all the listed series, then lag 2 of all the list series, and so on.

This facility is also available as a function: see lags.

Menu path: /Add/Lags of selected variables

ldiff

Argument: varlist

The first difference of the natural log of each series in varlist is obtained and the result stored in a
new series with the prefix ld_. Thus ldiff x y creates the new variables

ld_x = log(x) - log(x(-1))
ld_y = log(y) - log(y(-1))

Menu path: /Add/Log differences of selected variables

leverage

Options: --save (save the resulting series)

--overwrite (OK to overwrite existing series)

--quiet (don’t print results)

--plot=mode-or-filename (see below)

Example: leverage.inp

Must follow an ols command. Calculates the leverage (h, which must lie in the range 0 to 1) for
each data point in the sample on which the previous model was estimated. Displays the residual

Chapter 1. Gretl commands 49

(u) for each observation along with its leverage and a measure of its influence on the estimates,
uh/(1 − h). “Leverage points” for which the value of h exceeds 2k/n (where k is the number of
parameters being estimated and n is the sample size) are flagged with an asterisk. For details on
the concepts of leverage and influence see Davidson and MacKinnon (1993), Chapter 2.

DFFITS values are also computed: these are Studentized residuals (residuals divided by their stan-
dard errors) multiplied by

√
h/(1− h). They give a measure of the difference in fit for observation

i depending on whether or not that observation is included in the sample for estimation. For more
on this point see chapter 12 of Maddala’s Maddala (1992) or Belsley et al. (1980). For more on
Studentized residuals see the section headed Accessor matrix below.

If the --save flag is given with this command, the leverage, influence and DFFITS values are added
to the current data set; in this context the --quiet flag may be used to suppress the printing of
results. The default names of the saved series are, respectively, lever, influ and dffits. If series
of these names already exist, what happens depends on whether the --overwrite option is given.
If so, the existing series are overwritten; if not, the names will be adjusted to ensure uniqueness. In
the latter case the newly generated series will always be the highest-numbered three series in the
dataset.

After execution, the $test accessor returns the cross-validation criterion, which is defined as

n∑
i=1

(yi − ŷ−i)2

where ŷ−i is the forecast error for the i-th observation, after it has been excluded from the sample.
The criterion is, hence, the sum of the squared forecasting errors where all n observations but
the i-th one are used to predict it (the so-called leave-one-out estimator). For a broader discussion
of the cross-validation criterion, see Davidson and MacKinnon’s Econometric Theory and Methods,
pages 685–686, and the references therein.

By default, if this command is invoked interactively a plot of the leverage and influence values is
shown. This can be adjusted via the --plot option. The acceptable parameters to this option
are none (to suppress the plot); display (to display a plot even when in script mode); or a file
name. The effect of providing a file name is as described for the --output option of the gnuplot
command.

Accessor matrix

Besides the --save option noted above, results from this command can be retrieved in the form of a
three-column matrix via the $result accessor. The first two columns of this matrix contain leverage
and influence values (as with --save) but the third column holds Studentized residuals rather than
DFFITS values. These are “externally Studentized” or “jackknifed” residuals—that is, the standard
error in the divisor for observation i uses the residual mean square with that observation omitted.
Such a residual can be interpreted as a t statistic for the hypothesis that a 0/1 dummy variable
coding specifically for observation i would have a true coefficient of zero. For further discussion
of Studentized residuals see Chatterjee and Hadi (1986).

DFFITS values may be obtained from the $result matrix as follows:

R = $result
dffits = R[,3] .* sqrt(R[,1] ./ (1-R[,1]))

Or using series:

series h = $result[,1] # leverage
series sr = $result[,3] # Studentized residual
series dffits = sr * sqrt(h/(1-h))

Menu path: Model window, /Analysis/Influential observations

Chapter 1. Gretl commands 50

levinlin

Arguments: order series

Options: --nc (test without a constant)

--ct (with constant and trend)

--quiet (suppress printing of results)

--verbose (print per-unit results)

Examples: levinlin 0 y

levinlin 2 y --ct

levinlin {2,2,3,3,4,4} y

Carries out the panel unit-root test described by Levin et al. (2002). The null hypothesis is that all
of the individual time series exhibit a unit root, and the alternative is that none of the series has a
unit root. (That is, a common AR(1) coefficient is assumed, although in other respects the statistical
properties of the series are allowed to vary across individuals.)

By default the test ADF regressions include a constant; to suppress the constant use the --nc
option, or to add a linear trend use the --ct option. (See the adf command for explanation of ADF
regressions.)

The (non-negative) order for the test (governing the number of lags of the dependent variable to
include in the ADF regressions) may be given in either of two forms. If a scalar value is given, this
is applied to all the individuals in the panel. The alternative is to provide a matrix containing a
specific lag order for each individual; this must be a vector with as many elements as there are
individuals in the current sample range. Such a matrix can be specified by name, or constructed
using braces as illustrated in the last example above.

When the --verbose option is given, the following results are printed for each unit in the panel:
delta, the coefficient on the lagged level in each ADF regression; s2e, the estimated variance of
the innovations; and s2y, the estimated long-run variance of the differenced series.

Note that panel unit-root tests can also be conducted using the adf and kpss commands.

Menu path: /Variable/Unit root tests/Levin-Lin-Chu test

logistic

Arguments: depvar indepvars

Options: --ymax=value (specify maximum of dependent variable)

--robust (robust standard errors)

--cluster=clustvar (see logit for explanation)

--vcv (print covariance matrix)

--fixed-effects (see below)

--quiet (don’t print anything)

Examples: logistic y const x

logistic y const x --ymax=50

Logistic regression: carries out an OLS regression using the logistic transformation of the depen-
dent variable,

log

(
y

y∗ −y

)
In the case of panel data the specification may include individual fixed effects.

The dependent variable must be strictly positive. If all its values lie between 0 and 1, the default is
to use a y∗ value (the asymptotic maximum of the dependent variable) of 1; if its values lie between
0 and 100, the default y∗ is 100.

Chapter 1. Gretl commands 51

If you wish to set a different maximum, use the --ymax option. Note that the supplied value must
be greater than all of the observed values of the dependent variable.

The fitted values and residuals from the regression are automatically adjusted using the inverse of
the logistic transformation:

y ≈ E
(

y∗

1+ e−x
)

where x represents either a fitted value or a residual from the OLS regression using the logistic
dependent variable. The reported values are therefore comparable with the original dependent
variable. The need for approximation arises because the inverse transformation is nonlinear and
therefore does not conserve expectation.

The --fixed-effects option is applicable only if the dataset takes the form of a panel. In that case
we subtract the group means from the logistic transform of the dependent variable and estimation
proceeds as usual for fixed effects.

Note that if the dependent variable is binary, you should use the logit command instead.

Menu path: /Model/Limited dependent variable/Logistic

Menu path: /Model/Panel/FE logistic

logit

Arguments: depvar indepvars

Options: --robust (robust standard errors)

--cluster=clustvar (clustered standard errors)

--multinomial (estimate multinomial logit)

--vcv (print covariance matrix)

--verbose (print details of iterations)

--quiet (don’t print results)

--p-values (show p-values instead of slopes)

--estrella (select pseudo-R-squared variant)

Examples: keane.inp, oprobit.inp

If the dependent variable is a binary variable (all values are 0 or 1) maximum likelihood estimates
of the coefficients on indepvars are obtained via the Newton–Raphson method. As the model is
nonlinear the slopes depend on the values of the independent variables. By default the slopes
with respect to each of the independent variables are calculated (at the means of those variables)
and these slopes replace the usual p-values in the regression output. This behavior can be sup-
pressed by giving the --p-values option. The chi-square statistic tests the null hypothesis that all
coefficients are zero apart from the constant.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber–White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer
product of the gradient; see chapter 10 of Davidson and MacKinnon (2004). But if the --cluster
option is given, then “cluster-robust” standard errors are produced; see chapter 22 of the Gretl
User’s Guide for details.

By default the pseudo-R-squared statistic suggested by McFadden (1974) is shown, but in the bi-
nary case if the --estrella option is given, the variant recommended by Estrella (1998) is shown
instead. This variant arguably mimics more closely the properties of the regular R2 in the context
of least-squares estimation.

If the dependent variable is binary, logit coefficients represent the log of the odds ratio (the ratio
of the probability of y = 1 to that of y = 0). In this case the $model bundle available after es-
timation includes an the extra element named oddsratios, a matrix with four columns holding

Chapter 1. Gretl commands 52

the exponentiated coefficient (odds ratio) plus standard error computed via the delta method and
95 percent confidence interval, for each regressor. Note, however, that the confidence interval is
calculated as the exponential of that for the original coefficient.

If the dependent variable is not binary but is discrete, then by default it is interpreted as an or-
dinal response, and Ordered Logit estimates are obtained. However, if the --multinomial option
is given, the dependent variable is interpreted as an unordered response, and Multinomial Logit
estimates are produced. (In either case, if the variable selected as dependent is not discrete an
error is flagged.) The accessor $allprobs is available after estimation, to get a matrix containing
the estimated probabilities of the outcomes at each observation (observations in rows, outcomes in
columns).

If you want to use logit for analysis of proportions (where the dependent variable is the proportion
of cases having a certain characteristic, at each observation, rather than a 1 or 0 variable indicating
whether the characteristic is present or not) you should not use the logit command, but rather
construct the logit variable, as in

series lgt_p = log(p/(1 - p))

and use this as the dependent variable in an OLS regression. See chapter 12 of Ramanathan (2002).

Menu path: /Model/Limited dependent variable/Logit

logs

Argument: varlist

The natural log of each of the series in varlist is obtained and the result stored in a new series with
the prefix l_ (“el” underscore). For example, logs x y creates the new variables l_x = ln(x) and
l_y = ln(y).

Menu path: /Add/Logs of selected variables

loop

Argument: control

Options: --progressive (enable special forms of certain commands)

--verbose (echo commands and show confirmatory messages)

--decr (see below)

Examples: loop 1000

loop i=1..10

loop while essdiff > .00001

loop for (r=-.99; r<=.99; r+=.01)

loop foreach i xlist

See also armaloop.inp, keane.inp

This command opens a special mode in which the program accepts commands to be executed
repeatedly. You exit the mode of entering loop commands with endloop: at this point the stacked
commands are executed.

The parameter control may take any of five forms, as shown in the examples: an integer number
of times to repeat the commands within the loop; a range of integer values for an index variable;
“while” plus a boolean condition; “for” plus three expressions in parentheses, separated by semi-
colons (which emulates the for statement in the C programming language); or “foreach” plus an
index variable and a list.

Chapter 1. Gretl commands 53

The --decr option is specific to the “range of integer values” form of loop. By default the index is
incremented by 1 at each iteration, and if the starting value is less than the ending value the loop
will not run at all. When --decr is given the index is decremented by 1 at each iteration.

See chapter 13 of the Gretl User’s Guide for full details and examples. The effect of the --progressive
option (which is designed for use in Monte Carlo simulations) is explained there. Not all gretl com-
mands may be used within a loop; the commands available in this context are also set out there.

By default, execution of commands proceeds more quietly within loops than in other contexts. If
you want more feedback on what’s going on in a loop, give the --verbose option.

mahal

Argument: varlist

Options: --quiet (don’t print anything)

--save (add distances to the dataset)

--vcv (print covariance matrix)

Computes the Mahalanobis distances between the series in varlist. The Mahalanobis distance is the
distance between two points in a k-dimensional space, scaled by the statistical variation in each
dimension of the space. For example, if p and q are two observations on a set of k variables with
covariance matrix C , then the Mahalanobis distance between the observations is given by√

(p − q)′C−1(p − q)

where (p − q) is a k-vector. This reduces to Euclidean distance if the covariance matrix is the
identity matrix.

The space for which distances are computed is defined by the selected variables. For each ob-
servation in the current sample range, the distance is computed between the observation and the
centroid of the selected variables. This distance is the multidimensional counterpart of a standard
z-score, and can be used to judge whether a given observation “belongs” with a group of other
observations.

If the --vcv option is given, the covariance matrix and its inverse are printed. If the --save option
is given, the distances are saved to the dataset under the name mdist (or mdist1, mdist2 and so
on if there is already a variable of that name).

Menu path: /View/Mahalanobis distances

makepkg

Argument: filename

Options: --index (write auxiliary index file)

--translations (write auxiliary strings file)

--quiet (operate quietly)

Supports creation of a gretl function package via the command line. The mode of operation of this
command depends on the extension of filename, which must be either .gfn or .zip.

Gfn mode

Writes a gfn file. It is assumed that a package specification file, with the same basename as filename
but with the extension .spec, is accessible, along with any auxiliary files that it references. It is
also assumed that all the functions to be packaged have been read into memory.

Chapter 1. Gretl commands 54

Zip mode

Writes a zip package file (gfn plus other materials). If a gfn file of the same basename as filename
is found, gretl checks for corresponding inp and spec files: if these are both found and at least
one of them is newer than the gfn file then the gfn is rebuilt, otherwise the existing gfn is used. If
no such file is found, gretl first attempts to build the gfn.

Gfn options

The option flags support the writing of auxiliary files, intended for use with gretl “addons”. The
index file is a short XML document containing basic information about the package; it has the
same basename as the package and the extension .xml. The translations file contains strings from
the package that may be suitable for translation, in C format; for package foo this file is named
foo-i18n.c. These files are not produced if the command is operating in zip mode and a pre-
existing gfn file is used.

For details on all of this, see the gretl Function Package Guide.

Menu path: /File/Function packages/New package

markers

Variants: markers --to-file=filename

markers --from-file=filename

markers --to-array=name

markers --from-array=name

markers --from-series=name

markers --delete

The options --to-file and --to-array provide means of saving the observation marker strings
from the current dataset, either to a named file or a named array. If no such strings are present an
error is flagged. In the file case output will be written in the current workdir unless the filename
string contains a full path specification. The markers are written one per line. In the array case, if
name is the identifier of an existing array of strings it will be overwritten, otherwise a new array
will be created.

With the option --from-file, reads the specified file (which should be UTF-8 text) and assigns
observation markers to the rows in the dataset, reading one marker per line. In general there
should be at least as many markers in the file as observations in the dataset, but if the dataset
is a panel it is also acceptable if the number of markers in the file matches the number of cross-
sectional units (in which case the markers are repeated for each time period.) The --from-array
option works similarly, reading from a named array of strings.

The option --from-series offers a convenient way of creating observation markers by copying
from a string-valued series. An error is flagged if the specified series does not have string values.

The --delete option does what you’d expect: it removes the observation marker strings from the
dataset.

Menu path: /Data/Observation markers

meantest

Arguments: series1 series2

Option: --unequal-vars (assume variances are unequal)

Calculates the t statistic for the null hypothesis that the population means are equal for the vari-
ables series1 and series2, and shows its p-value.

Chapter 1. Gretl commands 55

By default the test statistic is calculated on the assumption that the variances are equal for the two
variables. With the --unequal-vars option the variances are assumed to be different; in this case
the degrees of freedom for the test statistic are approximated as per Satterthwaite (1946).

Menu path: /Tools/Test statistic calculator

midasreg

Arguments: depvar indepvars ; MIDAS-terms

Options: --vcv (print covariance matrix)

--robust (robust standard errors)

--quiet (suppress printing of results)

--levenberg (see below)

Examples: midasreg y 0 y(-1) ; mds(X, 1, 9, 1, theta)

midasreg y 0 y(-1) ; mds(X, 1, 9, 0)

midasreg y 0 y(-1) ; mdsl(XL, 2, theta)

See also gdp_midas.inp

Carries out least-squares estimation (either NLS or OLS, depending on the specification) of a MIDAS
(Mixed Data Sampling) model. Such models include one or more independent variables that are
observed at a higher frequency than the dependent variable; for a good brief introduction see
Armesto et al. (2010).

The variables in indepvars should be of the same frequency as the dependent variable. This list
should usually include const or 0 (intercept) and typically includes one or more lags of the depen-
dent variable. The high-frequency terms are given after a semicolon; each one takes the form of a
number of comma-separated arguments within parentheses, prefixed by either mds or mdsl.

mds: this variant generally requires 5 arguments, as follows: the name of a MIDAS list, two inte-
gers giving the minimum and maximum high-frequency lags, an integer between 0 and 4 (or string,
see below) specifying the type of parameterization to use, and the name of a vector holding initial
values of the parameters. The example below calls for lags 3 to 11 of the high-frequency series rep-
resented by the list X, using parameterization type 1 (exponential Almon, see below) with initializer
theta.

mds(X, 3, 11, 1, theta)

mdsl: generally requires 3 arguments: the name of a list of MIDAS lags, an integer (or string, see
below) to specify the type of parameterization and the name of an initialization vector. In this case
the minimum and maximum lags are implicit in the initial list argument. In the example below
Xlags should be a list which already holds all the required lags; such a list can be constructed
using the hflags function.

mdsl(XLags, 1, theta)

The supported types of parameterization are shown below; in the context of mds and mdsl specifi-
cations these may be given in the form of numeric codes or the double-quoted strings shown after
the numbers.

0 or "umidas": unrestricted MIDAS or U-MIDAS (each lag has its own coefficient)

1 or "nealmon": normalized exponential Almon; requires at least one parameter, commonly uses
two

2 or "beta0": normalized beta with a zero last lag; requires exactly two parameters

3 or "betan": normalized beta with non-zero last lag; requires exactly three parameters

Chapter 1. Gretl commands 56

4 or "almonp": (non-normalized) Almon polynomial; requires at least one parameter

5 or "beta1": as beta0, but with the first parameter fixed at 1, leaving a single free parameter.

When the parameterization is U-MIDAS, the final initializer argument is not required. In other cases
you can request an automatic initialization by substituting one or other of these two forms for the
name of an initial parameter vector:

• The keyword null: this is accepted if the parameterization has a fixed number of terms
(the beta cases, with 2 or 3 parameters). It’s also accepted for the exponential Almon case,
implying the default of 2 parameters.

• An integer value giving the required number of parameters.

The estimation method used by this command depends on the specification of the high-frequency
terms. In the case of U-MIDAS the method is OLS, otherwise it is nonlinear least squares (NLS).
When the normalized exponential Almon or normalized beta parameterization is specified, the
default NLS method is a combination of constrained BFGS and OLS, but the --levenberg option
can be given to force use of the Levenberg–Marquardt algorithm.

Menu path: /Model/Univariate time series/MIDAS

mle

Arguments: log-likelihood function [derivatives]

Options: --quiet (don’t show estimated model)

--vcv (print covariance matrix)

--hessian (base covariance matrix on the Hessian)

--robust[=hac] (QML or HAC covariance matrix)

--cluster=clustvar (cluster-robust covariance matrix)

--verbose (print details of iterations)

--no-gradient-check (see below)

--auxiliary (see below)

--lbfgs (use L-BFGS-B instead of regular BFGS)

Examples: weibull.inp, biprobit_via_ghk.inp, frontier.inp, keane.inp

Performs Maximum Likelihood (ML) estimation using either the BFGS (Broyden, Fletcher, Goldfarb,
Shanno) algorithm or Newton’s method. The user must specify the log-likelihood function. The
parameters of this function must be declared and given starting values prior to estimation. Option-
ally, the user may specify the derivatives of the log-likelihood function with respect to each of the
parameters; if analytical derivatives are not supplied, a numerical approximation is computed.

This help text assumes use of the default BFGS maximizer. For information on using Newton’s
method please see chapter 26 of the Gretl User’s Guide.

Simple example: Suppose we have a series X with values 0 or 1 and we wish to obtain the maximum
likelihood estimate of the probability, p, that X = 1. (In this simple case we can guess in advance
that the ML estimate of p will simply equal the proportion of Xs equal to 1 in the sample.)

The parameter p must first be added to the dataset and given an initial value. For example, scalar
p = 0.5.

We then construct the MLE command block:

mle loglik = X*log(p) + (1-X)*log(1-p)
deriv p = X/p - (1-X)/(1-p)

end mle

Chapter 1. Gretl commands 57

The first line above specifies the log-likelihood function. It starts with the keyword mle, then a
dependent variable is specified and an expression for the log-likelihood is given (using the same
syntax as in the genr command). The next line (which is optional) starts with the keyword deriv
and supplies the derivative of the log-likelihood function with respect to the parameter p. If no
derivatives are given, you should include a statement using the keyword params which identifies
the free parameters: these are listed on one line, separated by spaces and can be either scalars, or
vectors, or any combination of the two. For example, the above could be changed to:

mle loglik = X*log(p) + (1-X)*log(1-p)
params p

end mle

in which case numerical derivatives would be used.

Note that any option flags should be appended to the ending line of the MLE block. For example:

mle loglik = X*log(p) + (1-X)*log(1-p)
params p

end mle --quiet

Covariance matrix and standard errors

If the log-likelihood function returns a series or vector giving per-observation values then estimated
standard errors are by default based on the Outer Product of the Gradient (OPG), while if the
--hessian option is given they are instead based on the negative inverse of the Hessian, which
is approximated numerically. If the --robust option is given, a QML estimator is used (namely,
a sandwich of the negative inverse of the Hessian and the OPG). If the hac parameter is added
to this option the OPG is augmented in the manner of Newey and West (1987) to allow for serial
correlation of the gradient. (This only makes sense with time-series data.) However, if the log-
likelihood function just returns a scalar value, the OPG is not available (and so neither is the QML
estimator), and standard errors are of necessity computed using the numerical Hessian.

In the event that you just want the primary parameter estimates you can give the --auxiliary
option, which suppresses computation of the covariance matrix and standard errors; this will save
some CPU cycles and memory usage.

Checking analytical derivatives

If you supply analytical derivatives, by default gretl runs a numerical check on their plausibility.
Occasionally this may produce false positives, instances where correct derivatives appear to be
wrong and estimation is refused. To counter this, or to achieve a little extra speed, you can give
the option --no-gradient-check. Obviously, you should do this only if you are confident that the
gradient you have specified is right.

Parameter names

In estimating a nonlinear model it is often convenient to name the parameters tersely. In printing
the results, however, it may be desirable to use more informative labels. This can be achieved via
the additional keyword param_names within the command block. For a model with k parameters
the argument following this keyword should be a double-quoted string literal holding k space-
separated names, the name of a string variable that holds k such names, or the name of an array
of k strings.

For an in-depth description of mle please refer to chapter 26 of the Gretl User’s Guide.

Menu path: /Model/Maximum likelihood

Chapter 1. Gretl commands 58

modeltab

Variants: modeltab add

modeltab show

modeltab free

modeltab --output=filename

modeltab --options=bundle

Manipulates the gretl “model table”. See chapter 3 of the Gretl User’s Guide for details. The sub-
commands have the following effects: add adds the last model estimated to the model table, if
possible; show displays the model table in a window; and free clears the table.

To call for printing of the model table, use the flag --output= plus a filename. If the filename has
the suffix “.tex”, the output will be in TEX format; if the suffix is “.rtf” the output will be RTF;
otherwise it will be plain text. In the case of TEX output the default is to produce a “fragment”, suit-
able for inclusion in a document; if you want a stand-alone document instead, use the --complete
option, for example

modeltab --output="myfile.tex" --complete

The --options= flag, which requires the name of a gretl bundle, can be used to control certain
aspects of the formatting of the model table. The following keys are recognized:

• colheads: integer from 1 to 4, selects from the four supported column-head styles: Arabic
numbering, Roman numbering, alphabetical, or using the names under which models have
been saved. The default is 1 (Arabic numbering).

• tstats: boolean, replace standard errors with t-statistics or not (default 0).

• pvalues: boolean, include P -values or not (default 0).

• asterisks: boolean, show significance-level asterisks or not (default 1).

• digits: integer from 2 to 6, selects the number of significant digits shown (default 4).

• decplaces: integer from 2 to 6, selects the number of decimal places shown.

Note that the last two keys are mutually exclusive. They offer alternative ways of specifying the
precision to which numerical values are shown: either in terms of significant digits or decimal
places. The default is 4 significant digits.

An options bundle can be supplied via a stand-alone command (as in the last of the examples above)
or it can be combined with the show action or --output option. For example, the following script
builds a simple model table and displays it, with P -values shown instead of significance asterisks:

open data9-7
ols 1 0 2 3 4
modeltab add
ols 1 0 2 3
modeltab add
bundle myopts = _(pvalues=1, asterisks=0)
modeltab show --options=myopts

Menu path: Session icon window, Model table icon

Chapter 1. Gretl commands 59

modprint

Arguments: coeffmat names [addstats]

Option: --output=filename (send output to specified file)

Prints the coefficient table and optional additional statistics for a model estimated “by hand”.
Mainly useful for user-written functions.

The argument coeffmat should be a k by 2 matrix containing k coefficients and k associated stan-
dard errors. The names argument should supply at least k names for labeling the coefficients; it
can take the form of a string literal (in double quotes) or string variable, in which case the names
should be separated by commas or spaces, or it may be given as a named array of strings.

The optional argument addstats is a vector containing p additional statistics to be printed under the
coefficient table. If this argument is given, then names should contain k+ p names, the additional
p names to be associated with the extra statistics.

If addstats is not provided and the coeffmat matrix has row names attached, then the names
argument can be omitted.

To put the output into a file, use the flag --output= plus a filename. If the filename has the suffix
“.tex”, the output will be in TEX format; if the suffix is “.rtf” the output will be RTF; otherwise
it will be plain text. In the case of TEX output the default is to produce a “fragment”, suitable for
inclusion in a document; if you want a stand-alone document instead, use the --complete option.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

modtest

Argument: [order]

Options: --normality (normality of residual)

--logs (nonlinearity, logs)

--squares (nonlinearity, squares)

--autocorr (serial correlation)

--arch (ARCH)

--white (heteroskedasticity, White’s test)

--white-nocross (White’s test, squares only)

--breusch-pagan (heteroskedasticity, Breusch–Pagan)

--robust (robust variance estimate for Breusch–Pagan)

--panel (heteroskedasticity, groupwise)

--comfac (common factor restriction, AR1 models only)

--xdepend (cross-sectional dependence, panel data only)

--quiet (don’t print details)

--silent (don’t print anything)

Example: credscore.inp

Must immediately follow an estimation command. The discussion below applies to usage of the
command following estimation of a single-equation model; see chapter 32 of the Gretl User’s Guide
for an account of how modtest operates after estimation of a VAR.

Depending on the option given, this command carries out one of the following: the Doornik–Hansen
test for the normality of the error term; a Lagrange Multiplier test for nonlinearity (logs or squares);
White’s test (with or without cross-products) or the Breusch–Pagan test (Breusch and Pagan (1979))
for heteroskedasticity; the LMF test for serial correlation (Kiviet, 1986); a test for ARCH (Autore-
gressive Conditional Heteroskedasticity; see also the arch command); a test of the common factor
restriction implied by AR(1) estimation; or a test for cross-sectional dependence in panel-data mod-

Chapter 1. Gretl commands 60

els. With the exception of the normality, common factor and cross-sectional dependence tests most
of the options are only available for models estimated via OLS, but see below for details regarding
two-stage least squares.

The optional order argument is relevant only in case the --autocorr or --arch options are se-
lected. The default is to run these tests using a lag order equal to the periodicity of the data, but
this can be adjusted by supplying a specific lag order.

The --robust option applies only when the Breusch–Pagan test is selected; its effect is to use
the robust variance estimator proposed by Koenker (1981), making the test less sensitive to the
assumption of normality.

The --panel option is available only when the model is estimated on panel data: in this case a
test for groupwise heteroskedasticity is performed (that is, for a differing error variance across the
cross-sectional units).

The --comfac option is available only when the model is estimated via an AR(1) method such as
Hildreth–Lu. The auxiliary regression takes the form of a relatively unrestricted dynamic model,
which is used to test the common factor restriction implicit in the AR(1) specification.

The --xdepend option is available only for models estimated on panel data. The test statistic
is that developed by Pesaran (2004). The null hypothesis is that the error term is independently
distributed across the cross-sectional units or individuals.

By default, the program prints the auxiliary regression on which the test statistic is based, where
applicable. This may be suppressed by using the --quiet flag (minimal printed output) or the
--silent flag (no printed output). The test statistic and its p-value may be retrieved using the
accessors $test and $pvalue respectively.

When a model has been estimated by two-stage least squares (see tsls), the LM principle breaks
down and gretl offers some equivalents: the --autocorr option computes Godfrey’s test for au-
tocorrelation (Godfrey, 1994) while the --white option yields the HET1 heteroskedasticity test
(Pesaran and Taylor, 1999).

For additional diagnostic tests on models, see chow, cusum, reset and qlrtest.

Menu path: Model window, /Tests

mpi

Argument: see below

The mpi command starts a block of statements (which must be ended with end mpi) to be executed
using MPI (Message Passing Interface) parallelization. See gretl-mpi.pdf for a full account of this
facility.

mpols

Arguments: depvar indepvars

Options: --vcv (print covariance matrix)

--simple-print (do not print auxiliary statistics)

--quiet (suppress printing of results)

Computes OLS estimates for the specified model using multiple precision floating-point arithmetic,
with the help of the Gnu Multiple Precision (GMP) library. By default 256 bits of precision are used
for the calculations, but this can be increased via the environment variable GRETL_MP_BITS. For
example, when using the bash shell one could issue the following command, before starting gretl,
to set a precision of 1024 bits.

export GRETL_MP_BITS=1024

Chapter 1. Gretl commands 61

A rather arcane option is available for this command (primarily for testing purposes): if the inde-
pvars list is followed by a semicolon and a further list of numbers, those numbers are taken as
powers of x to be added to the regression, where x is the last variable in indepvars. These addi-
tional terms are computed and stored in multiple precision. In the following example y is regressed
on x and the second, third and fourth powers of x:

mpols y 0 x ; 2 3 4

Menu path: /Model/Other linear models/High precision OLS

negbin

Arguments: depvar indepvars [; offset]

Options: --model1 (use NegBin 1 model)

--robust (QML covariance matrix)

--cluster=clustvar (see logit for explanation)

--opg (see below)

--vcv (print covariance matrix)

--verbose (print details of iterations)

--quiet (don’t print results)

Example: camtriv.inp

Estimates a Negative Binomial model. The dependent variable is taken to represent a count of the
occurrence of events of some sort, and must have only non-negative integer values. By default the
model NegBin 2 is used, in which the conditional variance of the count is given by µ(1 + αµ), where
µ denotes the conditional mean. But if the --model1 option is given the conditional variance is µ(1
+ α).

The optional offset series works in the same way as for the poisson command. The Poisson model
is a restricted form of the Negative Binomial in which α = 0 by construction.

By default, standard errors are computed using a numerical approximation to the Hessian at con-
vergence. But if the --opg option is given the covariance matrix is based on the Outer Product of
the Gradient (OPG), or if the --robust option is given QML standard errors are calculated, using a
“sandwich” of the inverse of the Hessian and the OPG.

Menu path: /Model/Limited dependent variable/Count data

nls

Arguments: function [derivatives]

Options: --quiet (don’t show estimated model)

--robust (robust standard errors)

--vcv (print covariance matrix)

--verbose (print details of iterations)

--no-gradient-check (see below)

Examples: wg_nls.inp, ects_nls.inp

Performs Nonlinear Least Squares (NLS) estimation using a modified version of the Levenberg–
Marquardt algorithm. You must supply a function specification. The parameters of this function
must be declared and given starting values prior to estimation. Optionally, you may specify the
derivatives of the regression function with respect to each of the parameters. If you do not supply
derivatives you should instead give a list of the parameters to be estimated (separated by spaces
or commas), preceded by the keyword params. In the latter case a numerical approximation to the
Jacobian is computed.

Chapter 1. Gretl commands 62

It is easiest to show what is required by example. The following is a complete script to estimate the
nonlinear consumption function set out in William Greene’s Econometric Analysis (Chapter 11 of
the 4th edition, or Chapter 9 of the 5th). The numbers to the left of the lines are for reference and
are not part of the commands. Note that any option flags, such as --vcv for printing the covariance
matrix of the parameter estimates, should be appended to the final command, end nls.

1 open greene11_3.gdt
2 ols C 0 Y
3 scalar a = $coeff(0)
4 scalar b = $coeff(Y)
5 scalar g = 1.0
6 nls C = a + b * Y^g
7 deriv a = 1
8 deriv b = Y^g
9 deriv g = b * Y^g * log(Y)
10 end nls --vcv

It is often convenient to initialize the parameters by reference to a related linear model; that is
accomplished here on lines 2 to 5. The parameters alpha, beta and gamma could be set to any
initial values (not necessarily based on a model estimated with OLS), although convergence of the
NLS procedure is not guaranteed for an arbitrary starting point.

The actual NLS commands occupy lines 6 to 10. On line 6 the nls command is given: a dependent
variable is specified, followed by an equals sign, followed by a function specification. The syntax for
the expression on the right is the same as that for the genr command. The next three lines specify
the derivatives of the regression function with respect to each of the parameters in turn. Each line
begins with the keyword deriv, gives the name of a parameter, an equals sign, and an expression
whereby the derivative can be calculated. As an alternative to supplying analytical derivatives, you
could substitute the following for lines 7 to 9:

params a b g

Line 10, end nls, completes the command and calls for estimation. Any options should be ap-
pended to this line.

If you supply analytical derivatives, by default gretl runs a numerical check on their plausibility.
Occasionally this may produce false positives, instances where correct derivatives appear to be
wrong and estimation is refused. To counter this, or to achieve a little extra speed, you can give
the option --no-gradient-check. Obviously, you should do this only if you are confident that the
gradient you have specified is right.

Parameter names

In estimating a nonlinear model it is often convenient to name the parameters tersely. In printing
the results, however, it may be desirable to use more informative labels. This can be achieved via
the additional keyword param_names within the command block. For a model with k parameters
the argument following this keyword should be a double-quoted string literal holding k space-
separated names, the name of a string variable that holds k such names, or the name of an array
of k strings.

For further details on NLS estimation please see chapter 25 of the Gretl User’s Guide.

Menu path: /Model/Nonlinear Least Squares

Chapter 1. Gretl commands 63

normtest

Argument: series

Options: --dhansen (Doornik–Hansen test, the default)

--swilk (Shapiro–Wilk test)

--lillie (Lilliefors test)

--jbera (Jarque–Bera test)

--all (do all tests)

--quiet (suppress printed output)

Carries out a test for normality for the given series. The specific test is controlled by the option
flags (but if no flag is given, the Doornik–Hansen test is performed). Note: the Doornik–Hansen and
Shapiro–Wilk tests are recommended over the others, on account of their superior small-sample
properties.

The test statistic and its p-value may be retrieved using the accessors $test and $pvalue. Please
note that if the --all option is given, the result recorded is that from the Doornik–Hansen test.

Menu path: /Variable/Normality test

nulldata

Argument: series_length

Option: --preserve (preserve variables other than series)

Example: nulldata 500

Establishes a “blank” data set, containing only a constant and an index variable, with periodicity 1
and the specified number of observations. This may be used for simulation purposes: functions
such as uniform() and normal() will generate artificial series from scratch to fill out the data
set. This command may be useful in conjunction with loop. See also the “seed” option to the set
command.

By default, this command cleans out all data in gretl’s current workspace: not only series but also
matrices, scalars, strings, etc. If you give the --preserve option, however, any currently defined
variables other than series are retained.

Menu path: /File/New data set

ols

Arguments: depvar indepvars

Options: --vcv (print covariance matrix)

--robust (robust standard errors)

--cluster=clustvar (clustered standard errors)

--jackknife (see below)

--simple-print (do not print auxiliary statistics)

--quiet (suppress printing of results)

--anova (print an ANOVA table)

--no-df-corr (suppress degrees of freedom correction)

--print-final (see below)

Examples: ols 1 0 2 4 6 7

ols y 0 x1 x2 x3 --vcv

ols y 0 x1 x2 x3 --quiet

Computes ordinary least squares (OLS) estimates with depvar as the dependent variable and inde-
pvars as the list of independent variables. Variables may be specified by name or number; use the

Chapter 1. Gretl commands 64

number zero for a constant term.

Besides coefficient estimates and standard errors, the program also prints p-values for t (two-tailed)
and F -statistics. A p-value below 0.01 indicates statistical significance at the 1 percent level and is
marked with ***. ** indicates significance between 1 and 5 percent and * indicates significance
between the 5 and 10 percent levels. Model selection statistics (the Akaike Information Criterion
or AIC and Schwarz’s Bayesian Information Criterion) are also printed. The formula used for the
AIC is that given by Akaike (1974), namely minus two times the maximized log-likelihood plus two
times the number of parameters estimated.

If the option --no-df-corr is given, the usual degrees of freedom correction is not applied when
calculating the estimated error variance (and hence also the standard errors of the parameter esti-
mates).

The option --print-final is applicable only in the context of a loop. It arranges for the regression
to be run silently on all but the final iteration of the loop. See chapter 13 of the Gretl User’s Guide
for details.

Various internal variables may be retrieved following estimation. For example

series uh = $uhat

saves the residuals under the name uh. See the “accessors” section of the gretl function reference
for details.

The specific formula (“HC” version) used for generating robust standard errors when the --robust
option is given can be adjusted via the set command. The --jackknife option has the effect of
selecting an hc_version of 3a. The --cluster overrides the selection of HC version, and produces
robust standard errors by grouping the observations by the distinct values of clustvar; see chapter
22 of the Gretl User’s Guide for details.

Menu path: /Model/Ordinary Least Squares

Other access: Beta-hat button on toolbar

omit

Argument: varlist

Options: --test-only (don’t replace the current model)

--chi-square (give chi-square form of Wald test)

--quiet (print only the basic test result)

--silent (don’t print anything)

--vcv (print covariance matrix for reduced model)

--auto[=alpha] (sequential elimination, see below)

Examples: omit 5 7 9

omit seasonals --quiet

omit --auto

omit --auto=0.05

See also restrict.inp, sw_ch12.inp, sw_ch14.inp

This command must follow an estimation command. In its primary form, it calculates a Wald test
for the joint significance of the variables in varlist, which should be a subset (though not necessarily
a proper subset) of the independent variables in the model last estimated. The results of the test
may be retrieved using the accessors $test and $pvalue.

Unless the restriction removes all the original regressors, by default the restricted model is esti-
mated and it replaces the original as the “current model” for the purposes of, for example, re-
trieving the residuals as $uhat or doing further tests. This behavior may be suppressed via the

Chapter 1. Gretl commands 65

--test-only option.

By default the F -form of the Wald test is recorded; the --chi-square option may be used to record
the chi-square form instead.

If the restricted model is both estimated and printed, the --vcv option has the effect of printing
its covariance matrix, otherwise this option is ignored.

Alternatively, if the --auto flag is given, sequential elimination is performed: at each step the
variable with the highest p-value is omitted, until all remaining variables have a p-value no greater
than some cutoff. The default cutoff is 10 percent (two-sided); this can be adjusted by appending
“=” and a value between 0 and 1 (with no spaces), as in the fourth example above. If varlist is given
this process is confined to the listed variables, otherwise all regressors aside from the constant
are treated as candidates for omission. Note that the --auto and --test-only options cannot be
combined.

Menu path: Model window, /Tests/Omit variables

open

Argument: filename

Options: --quiet (don’t print list of series)

--preserve (preserve variables other than series)

--select=selection (read only the specified series, see below)

--frompkg=pkgname (see below)

--all-cols (see below)

--www (use a database on the gretl server)

--odbc (use an ODBC database)

See below for additional specialized options

Examples: open data4-1

open voter.dta

open fedbog.bin --www

open dbnomics

Opens a data file or database—see chapter 4 of the Gretl User’s Guide for an explanation of this
distinction. The effect is somewhat different in the two cases. When a data file is opened, its content
is read into gretl’s workspace, replacing the current dataset (if any). To add data to the current
dataset instead of replacing, see append or (for greater flexibility) join. When a database is opened
this does not immediately load any data; rather, it sets the source for subsequent invocations of
the data command, which is used to import selected series. For specifics regarding databases see
the section headed “Opening a database” below.

If filename is not given as a full path, gretl will search some relevant paths to try to find the file,
with workdir as a first choice. If no filename suffix is given (as in the first example above), gretl
assumes a native datafile with suffix .gdt. Based on the name of the file and various heuristics,
gretl will try to detect the format of the data file (native, plain text, CSV, MS Excel, Stata, SPSS, etc.).

If the --frompkg option is used, gretl will look for the specified data file in the subdirectory asso-
ciated with the function package specified by pkgname.

If the filename argument takes the form of a URI starting with http:// or https://, then gretl will
attempt to download the indicated data file before opening it.

By default, opening a new data file clears the current gretl session, which includes deletion of all
named variables, including matrices, scalars and strings. If you wish to keep your currently defined
variables (other than series, which are necessarily cleared out), use the --preserve option.

Chapter 1. Gretl commands 66

Spreadsheet files

When opening a data file in a spreadsheet format (Gnumeric, Open Document or MS Excel), you
may give up to three additional parameters following the filename. First, you can select a particular
worksheet within the file. This is done either by giving its (1-based) number, using the syntax,
e.g., --sheet=2, or, if you know the name of the sheet, by giving the name in double quotes, as in
--sheet="MacroData". The default is to read the first worksheet. You can also specify a column
and/or row offset into the worksheet via, e.g.,

--coloffset=3 --rowoffset=2

which would cause gretl to ignore the first 3 columns and the first 2 rows. The default is an offset
of 0 in both dimensions, that is, to start reading at the top-left cell.

Delimited text files

With plain text files, gretl generally expects to find the data columns delimited in some standard
manner (generally via comma, tab, space or semicolon). By default gretl looks for observation labels
or dates in the first column if its heading is empty or is a suggestive string such as “year”, “date”
or “obs”. You can prevent gretl from treating the first column specially by giving the --all-cols
option.

Fixed format text

A “fixed format” text data file is one without column delimiters, but in which the data are laid
out according to a known set of specifications such as “variable k occupies 8 columns starting at
column 24”. To read such files, you should append a string --fixed-cols=colspec, where colspec
is composed of comma-separated integers. These integers are interpreted as a set of pairs. The
first element of each pair denotes a starting column, measured in bytes from the beginning of the
line with 1 indicating the first byte; and the second element indicates how many bytes should be
read for the given field. So, for example, if you say

open fixed.txt --fixed-cols=1,6,20,3

then for variable 1 gretl will read 6 bytes starting at column 1; and for variable 2, 3 bytes starting
at column 20. Lines that are blank, or that begin with #, are ignored, but otherwise the column-
reading template is applied, and if anything other than a valid numerical value is found an error is
flagged. If the data are read successfully, the variables will be named v1, v2, etc. It’s up to the user
to provide meaningful names and/or descriptions using the commands rename and/or setinfo.

String-valued series

By default, when you import a file that contains string-valued series, a text box will open showing
you the contents of string_table.txt, a file which contains the mapping between strings and
their numeric coding. You can suppress this behavior via the --quiet option.

Loading selected series

Use of open with a data file argument (as opposed to the database case, see below) generally implies
loading all series from the specified file. However, in the case of native gretl files (gdt and gdtb)
only, it is possible to specify by name a subset of series to load. This is done via the --select
option, which requires an accompanying argument in one of three forms: the name of a single
series; a list of names, separated by spaces and enclosed in double quotes; or the name of an array
of strings. Examples:

Chapter 1. Gretl commands 67

single series
open somefile.gdt --select=x1
more than one series
open somefile.gdt --select="x1 x5 x27"
alternative method
strings Sel = defarray("x1", "x5", "x27")
open somefile.gdt --select=Sel

Opening a database

As mentioned above, the open command can be used to open a database file for subsequent reading
via the data command. Supported file-types are native gretl databases, RATS 4.0 and PcGive.

Besides reading a file of one of these types on the local machine, three further cases are supported.
First, if the --www option is given, gretl will try to access a native gretl database of the given name on
the gretl server—for instance the Federal Reserve interest rates database fedbog.bin in the third
example shown above. Second, the command “open dbnomics” can be used to set DB.NOMICS as
the source for database reads; on this see dbnomics for gretl. Third, if the --odbc option is given
gretl will try to access an ODBC database. This option is explained at length in chapter 42 of the
Gretl User’s Guide.

Menu path: /File/Open data

Other access: Drag a data file onto gretl’s main window

orthdev

Argument: varlist

Applicable with panel data only. A series of forward orthogonal deviations is obtained for each
variable in varlist and stored in a new variable with the prefix o_. Thus orthdev x y creates the
new variables o_x and o_y.

The values are stored one step ahead of their true temporal location (that is, o_x at observation
t holds the deviation that, strictly speaking, belongs at t − 1). This is for compatibility with first
differences: one loses the first observation in each time series, not the last.

outfile

Variants: outfile filename

outfile --buffer=strvar

outfile --tempfile=strvar

Options: --append (append to file, first variant only)

--quiet (see below)

--buffer (see below)

--tempfile (see below)

--decpoint (see below)

The outfile command starts a block in which any printed output is diverted to a file or buffer
(or just discarded, if you wish). Such a block is terminated by the command “end outfile”, after
which output reverts to the default stream.

Diversion to a named file

The first variant shown above sends output to a file named by the filename argument. By default a
new file is created (or an existing one is overwritten). The output file will be written in the currently

Chapter 1. Gretl commands 68

set workdir, unless the filename string contains a full path specification to the contrary. If you wish
to append output to an existing file instead, use the --append flag.

A simple example follows, where the output from a particular regression is written to a named file.

open data4-10
outfile regress.txt
ols ENROLL 0 CATHOL INCOME COLLEGE

end outfile

Special dummy filenames

Three special values for filename are supported, as follows:

• null: printed output is suppressed until redirection is ended.

• stdout: output is redirected to the “standard output” stream.

• stderr: output is redirected to the “standard error” stream.

Diversion to a string buffer

The --buffer option is used to store output in a string variable. The required parameter for this
option must be the name of an existing string variable, whose content will be over-written. We
show below the example given above, revised to write to a string. In this case printing model_out
will display the redirected output.

open data4-10
string model_out = ""
outfile --buffer=model_out
ols ENROLL 0 CATHOL INCOME COLLEGE

end outfile
print model_out

Diversion to a temporary file

The --tempfile option is used to direct output to a temporary file, with an automatically con-
structed name that is guaranteed to be unique, in the user’s “dot” directory. As in the redirection
to buffer case, the option parameter should be the name of a string variable: in this case its content
is over-written with the name of the temporary file. Please note: files written to the dot directory are
cleaned up on exit from the program, so don’t use this form if you want the output to be preserved
after your gretl session.

We repeat the simple example from above, with a couple of extra lines to illustrate the points that
strvar tells you where the output went, and you can retrieve it using the readfile function.

open data4-10
string mytemp
outfile --tempfile=mytemp
ols ENROLL 0 CATHOL INCOME COLLEGE

end outfile
printf "Output went to %s\n", mytemp
printf "The output was:\n%s\n", readfile(mytemp)
clean up if the file is no longer needed
remove(mytemp)

In some cases you may wish to exercise some control over the name of the temporary file. You can
do this by supplying a string variable which contains six consecutive Xs, as in

Chapter 1. Gretl commands 69

string mytemp = "tmpXXXXXX.csv"
outfile --tempfile=mytemp
...

In this case XXXXXX will be replaced by random characters that ensure uniqueness of the filename,
but the “.csv” suffix will be preserved. As in the simpler case above, the file is automatically
written into the user’s “dot” directory and the content of the string variable passed via the option
flag is modified to hold the full path to the temporary file.

Quietness

The effect of the --quiet option is to turn off the echoing of commands and the printing of
auxiliary messages while output is redirected. It is equivalent to doing

set echo off
set messages off

except that when redirection is ended the original values of the echo and messages variables are
restored. This option is available in all cases.

Decimal character

The effect of the --decpoint option is ensure that the decimal point character (as opposed to
comma) is in force while output is redirected. When the outfile block ends the decimal character
reverts to whatever was in place before it. This option is especially useful if the text file to be
created is meant as an input for some other program that requires digits to follow the English
convention, as would be the case, for example, of a gnuplot or R script.

Levels of redirection

In general only one file can be opened in this way at any given time, so calls to this command cannot
be nested. However, use of this command is permitted inside user-defined functions (provided
the output file is also closed from inside the same function) such that output can be temporarily
diverted and then given back to an original output file, in case outfile is currently in use by the
caller. For example, the code

function void f (string s)
outfile inner.txt
print s

end outfile
end function

outfile outer.txt --quiet
print "Outside"
f("Inside")
print "Outside again"

end outfile

will produce a file called “outer.txt” containing the two lines

Outside
Outside again

and a file called “inner.txt” containing the line

Inside

Chapter 1. Gretl commands 70

panel

Arguments: depvar indepvars

Options: --vcv (print covariance matrix)

--fixed-effects (estimate with group fixed effects)

--random-effects (random effects or GLS model)

--nerlove (use the Nerlove transformation)

--pooled (estimate via pooled OLS)

--between (estimate the between-groups model)

--robust (robust standard errors; see below)

--cluster=cvar (clustered standard errors; see below)

--time-dummies (include time dummy variables)

--unit-weights (weighted least squares)

--iterate (iterative estimation)

--matrix-diff (compute Hausman test via matrix difference)

--unbalanced=method (random effects only, see below)

--quiet (less verbose output)

--verbose (more verbose output)

Examples: penngrow.inp, panel-robust.inp

Estimates a panel model. By default the fixed effects estimator is used; this is implemented by
subtracting the group or unit means from the original data.

If the --random-effects flag is given, random effects estimates are computed, by default using the
method of Swamy and Arora (1972). In this case (only) the option --matrix-diff forces use of the
matrix-difference method (as opposed to the regression method) for carrying out the Hausman test
for the consistency of the random effects estimator. Also specific to the random effects estimator
is the --nerlove flag, which selects the method of Nerlove (1971) as opposed to Swamy and Arora.

Alternatively, if the --unit-weights flag is given, the model is estimated via weighted least
squares, with the weights based on the residual variance for the respective cross-sectional units
in the sample. In this case (only) the --iterate flag may be added to produce iterative estimates:
if the iteration converges, the resulting estimates are Maximum Likelihood.

As a further alternative, if the --between flag is given, the between-groups model is estimated (that
is, an OLS regression using the group means).

The default means of calculating robust standard errors in panel-data models is the HAC estimator
of Arellano (2003) (clustered by panel unit). Alternatives are “Panel Corrected Standard Errors”
(Beck and Katz (1995)) and “Spatial Correlation Consistent” standard errors (Driscoll and Kraay
(1998)). These can be selected via the command set panel_robust with arguments pcse and
scc, respectively. Other alternatives to these three options are available via the --cluster op-
tion; please see chapter 22 of the Gretl User’s Guide for details. When robust standard errors are
specified the joint F test on the fixed effects is performed using the robust method of Welch (1951).

The --unbalanced option is available only for random effects models: it can be used to choose an
ANOVA method for use with an unbalanced panel. By default gretl uses the Swamy–Arora method
as for balanced panels, except that the harmonic mean of the individual time-series lengths is used
in place of a common T . Under this option you can specify either bc, to use the method of Baltagi
and Chang (1994), or stata, to emulate the sa option to the xtreg command in Stata.

For more details on panel estimation, please see chapter 23 of the Gretl User’s Guide.

Menu path: /Model/Panel

Chapter 1. Gretl commands 71

panplot

Argument: plotvar

Options: --means (time series, group means)

--overlay (plot per group, overlaid, N <= 130)

--sequence (plot per group, in sequence, N <= 130)

--grid (plot per group, in grid, N <= 16)

--stack (plot per group, stacked, N <= 6)

--boxplots (boxplot per group, in sequence, N <= 150)

--boxplot (single boxplot, all groups)

--output=filename (send output to specified file)

Examples: panplot x --overlay

panplot x --means --output=display

Graphing command specific to panel data: the series plotvar is plotted in a mode specified by one
or other of the options.

Apart from the --means and --boxplot options the plot explicitly represents variation in both
the time-series and cross-sectional dimensions. Such plots are limited in respect of the number of
groups (also known as individuals or units) in the current sample range of the panel. For example,
the --overlay option, which shows a time series for each group in a single plot, is available only
when the number of groups, N, is 130 or less. (Otherwise the graphic becomes too dense to be
informative.) If a panel is too large to permit the desired plot specification one can select a reduced
range of groups or units temporarily, as in

smpl 1 100 --unit
panplot x --overlay
smpl full

The --output=filename option can be used to control the form and destination of the output; see
the gnuplot command for details.

Other access: Main window pop-up menu (single selection)

panspec

Options: --nerlove (use Nerlove method for random effects)

--matrix_diff (use matrix-difference method for Hausman test)

--quiet (Suppress printed output)

This command is available only after estimating a panel-data model via OLS. It tests the simple
pooled specification against the most common alternatives, fixed effects and random effects.

The fixed effects specification allows the intercept of the regression to vary across the cross-
sectional units. A Wald F -test is reported for the null hypotheses that the intercepts do not differ.
The random effects specification decomposes the residual variance into two parts, one part specific
to the cross-sectional unit and the other specific to the particular observation. (This estimator can
be computed only if the number of cross-sectional units in the data set exceeds the number of
parameters to be estimated.) The Breusch–Pagan LM statistic tests the null hypothesis that pooled
OLS is adequate against the random effects alternative.

Pooled OLS may be rejected against both of the alternatives. Provided the unit- or group-specific
error is uncorrelated with the independent variables, the random effects estimator is more efficient
than fixed effects; otherwise the random effects estimator is inconsistent and fixed effects are to
be preferred. The null hypothesis for the Hausman test is that the group-specific error is not so
correlated (and therefore the random effects estimator is preferable). A low p-value for this test
counts against random effects and in favor of fixed effects.

Chapter 1. Gretl commands 72

The first two options for this command pertain to random effects estimation. By default the method
of Swamy and Arora is used, and the Hausman test statistic is calculated using the regression
method. The options enable the use of Nerlove’s alternative variance estimator, and/or the matrix-
difference approach to the Hausman statistic.

On successful completion the accessors $test and $pvalue retrieve 3-vectors holding test statistics
and p-values for the three tests noted above: poolability (Wald), poolability (Breusch–Pagan), and
Hausman. If you just want the results in this form you can give the --quiet option to skip printed
output.

Note that after estimating the random effects specification via the panel command, the Hausman
test is automatically carried out and the results can be retrieved via the $hausman accessor.

Menu path: Model window, /Tests/Panel specification

pca

Argument: varlist

Options: --covariance (use the covariance matrix)

--save[=n] (save major components)

--save-all (save all components)

--quiet (don’t print results)

Principal Components Analysis. Unless the --quiet option is given, prints the eigenvalues of the
correlation matrix (or the covariance matrix if the --covariance option is given) for the variables
in varlist, along with the proportion of the joint variance accounted for by each component. Also
prints the corresponding eigenvectors or “component loadings”.

If you give the --save-all option then all components are saved to the dataset as series, with
names PC1, PC2 and so on. These artificial variables are formed as the sum of (component loading)
times (standardized Xi), where Xi denotes the ith variable in varlist.

If you give the --save option without a parameter value, components with eigenvalues greater
than the mean (which means greater than 1.0 if the analysis is based on the correlation matrix) are
saved to the dataset as described above. If you provide a value for n with this option then the most
important n components are saved.

See also the princomp function.

Menu path: /View/Principal components

pergm

Arguments: series [bandwidth]

Options: --bartlett (use Bartlett lag window)

--log (use log scale)

--radians (show frequency in radians)

--degrees (show frequency in degrees)

--plot=mode-or-filename (see below)

--silent (suppress printed output)

Computes and displays the spectrum of the specified series. By default the sample periodogram
is given, but optionally a Bartlett lag window is used in estimating the spectrum (see, for example,
Greene’s Econometric Analysis for a discussion of this). The default width of the Bartlett window
is twice the square root of the sample size but this can be set manually using the bandwidth
parameter, up to a maximum of half the sample size.

If the --log option is given the spectrum is represented on a logarithmic scale.

Chapter 1. Gretl commands 73

The (mutually exclusive) options --radians and --degrees influence the appearance of the fre-
quency axis when the periodogram is graphed. By default the frequency is scaled by the number of
periods in the sample, but these options cause the axis to be labeled from 0 to π radians or from 0
to 180◦, respectively.

By default, if gretl is not in batch mode a plot of the periodogram is shown. This can be adjusted
via the --plot option. The acceptable parameters to this option are none (to suppress the plot);
display (to display a plot even when in batch mode); or a file name. The effect of providing a file
name is as described for the --output option of the gnuplot command.

Menu path: /Variable/Periodogram

Other access: Main window pop-up menu (single selection)

pkg

Arguments: action pkgname

Options: --local (install from local file)

--quiet (see below)

--verbose (see below)

--staging (see below)

Examples: pkg install armax

pkg install /path/to/myfile.gfn --local

pkg query ghosts

pkg run-sample ghosts

pkg unload armax

This command provides a means of installing, unloading, querying or deleting gretl function pack-
ages. The action argument must be one of install, query, run-sample, unload, remove or index.
An extension to support data file packages is described below.

install: In the most basic form, with no option flag and the pkgname argument given as the
“plain” name of a gretl function package (as in the first example above), the effect is to download
the specified package from the gretl server (unless pkgname starts with http://) and install it on
the local machine. In this case it is not necessary to supply a filename extension. If the --local
option is given, however, pkgname should be the path to an uninstalled package file on the local
machine, with the correct extension (.gfn or .zip). In this case the effect is to copy the file into
place (gfn), or unzip it into place (zip), “into place” meaning where the include command will find
it.

query: The default effect is to print basic information about the specified package (author, version,
etc.). If the package includes extra resources (data files and/or additional scripts) a listing of these
files is included. If the --quiet option is appended nothing is printed; the package information is
instead stored in the form of a gretl bundle, which can be accessed via $result. If no information
can be found this bundle will be empty.

run-sample: Provides a command-line means of running the sample script included in the specified
package.

unload: pkgname should be given in plain form, without path or suffix as in the last example above.
The effect is to unload the package in question from gretl’s memory, if it is currently loaded, and
also to remove it from the GUI menu to which it is attached, if any.

remove: performs the actions noted for unload and in addition deletes the file(s) associated with
the package from disk.

index: is a special case in which pkgname must be replaced by the keyword “addons”: the effect
is to update the index of the standard packages known as addons. Such updating is performed
automatically from time to time but in some cases a manual update may be useful. In this case the

Chapter 1. Gretl commands 74

--verbose flag produces a printout of where gretl has searched and what it has found. To be clear,
here’s the way to get full indexing output:

pkg index addons --verbose

Data file packages

Besides its usage with function packages, the pkg install command can also be used with data file
packages of the tar.gz type, as listed at https://gretl.sourceforge.net/gretl_data.html.
For example, to install the Verbeek data files one can do

pkg install verbeek.tar.gz

Note that install is the only action supported operation for such files.

Staging

The --staging option is a convenience item for developers and is available only in conjunction
with the install action as applied to a function package. Its effect is that the package in question
is downloaded from the staging area at sourceforge rather than the public area. Packages in
staging are not yet approved for general use, so ignore this option unless you know what you’re
doing.

Menu path: /File/Function packages/On server

plot

Argument: [data]

Options: --output=filename (send output to specified file)

--outbuf=stringname (send output to specified string)

Example: nile.inp

The plot block provides an alternative to the gnuplot command which may be more convenient
when you are producing an elaborate plot (with several options and/or gnuplot commands to be
inserted into the plot file). In addition to the following explanation, please also refer to chapter 6
of the Gretl User’s Guide for some further examples.

A plot block starts with the command-word plot. This is commonly followed by a data argument,
which specifies data to be plotted: this should be the name of a list, a matrix, or a single series. If
no input data are specified the block must contain at least one directive to plot a formula instead;
such directives may be given via literal or printf lines (see below).

If a list or matrix is given, the last element (list) or column (matrix) is assumed to be the x-axis vari-
able and the other(s) the y-axis variable(s), unless the --time-series option is given in which case
all the specified data go on the y axis. The option of supplying a single series name is restricted to
time-series data, in which case it is assumed that a time-series plot is wanted; otherwise an error is
flagged.

The starting line may be prefixed with the “savename <-” apparatus to save a plot as an icon in the
GUI program. The block ends with end plot.

Inside the block you have zero or more lines of these types, identified by an initial keyword:

• option: specify a single option.

• options: specify multiple options on a single line, separated by spaces.

• literal: a command to be passed to gnuplot literally.

https://gretl.sourceforge.net/gretl_data.html

Chapter 1. Gretl commands 75

• printf: a printf statement whose result will be passed to gnuplot literally.

Note that besides --output and --outbuf, which should be appended to the line that ends the
block, all the options supported by the gnuplot command are also supported by plot, but should
be given within the block using the syntax described above. In this context it is not necessary to
supply the customary double-dash before the option specifier. For details on the effects of the
various options see gnuplot.

The intended use of the plot block is best illustrated by example:

string title = "My title"
string xname = "My x-variable"
plot plotmat

options with-lines fit=none
literal set linetype 3 lc rgb "#0000ff"
literal set nokey
printf "set title ’%s’", title
printf "set xlabel ’%s’", xname

end plot --output=display

This example assumes that plotmat is the name of a matrix with at least 2 columns (or a list with
at least two members). Note that it is considered good practice to place the --output option (only)
on the last line of the block; other options should be placed within the block.

Plotting without data

The following example shows a case of specifying a plot without a data source.

plot
literal set title ’CRRA utility’
literal set xlabel ’c’
literal set ylabel ’u(c)’
literal set xrange[1:3]
literal set key top left
literal crra(x,s) = (x**(1-s) - 1)/(1-s)
printf "plot crra(x, 0) t ’sigma=0’, \\"
printf " log(x) t ’sigma=1’, \\"
printf " crra(x,3) t ’sigma=3"

end plot --output=display

poisson

Arguments: depvar indepvars [; offset]

Options: --robust (robust standard errors)

--cluster=clustvar (see logit for explanation)

--vcv (print covariance matrix)

--verbose (print details of iterations)

--quiet (don’t print results)

Examples: poisson y 0 x1 x2

poisson y 0 x1 x2 ; S

See also camtriv.inp, greene19_3.inp

Estimates a poisson regression. The dependent variable is taken to represent the occurrence of
events of some sort, and must take on only non-negative integer values.

Chapter 1. Gretl commands 76

If a discrete random variable Y follows the Poisson distribution, then

Pr(Y = y) = e
−vvy

y !

for y = 0, 1, 2,. . . . The mean and variance of the distribution are both equal to v . In the Pois-
son regression model, the parameter v is represented as a function of one or more independent
variables. The most common version (and the only one supported by gretl) has

v = exp(β0 + β1x1 + β2x2 + · · ·)

or in other words the log of v is a linear function of the independent variables.

Optionally, you may add an “offset” variable to the specification. This is a scale variable, the log
of which is added to the linear regression function (implicitly, with a coefficient of 1.0). This
makes sense if you expect the number of occurrences of the event in question to be proportional,
other things equal, to some known factor. For example, the number of traffic accidents might be
supposed to be proportional to traffic volume, other things equal, and in that case traffic volume
could be specified as an “offset” in a Poisson model of the accident rate. The offset variable must
be strictly positive.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber–White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer
product of the gradient.

See also negbin.

Menu path: /Model/Limited dependent variable/Count data

print

Variants: print varlist

print

print object-names

print string-literal

Options: --byobs (by observations)

--no-dates (use simple observation numbers)

--range=start:stop (see below)

--midas (see below)

--tree (specific to bundles; see below)

Examples: print x1 x2 --byobs

print my_matrix

print "This is a string"

print my_array --range=3:6

print hflist --midas

Please note that print is a rather “basic” command (primarily intended for printing the values of
series); see printf and eval for more advanced, and less restrictive, alternatives.

In the first variant shown above (also see the first example), varlist should be a list of series (either
a named list or a list specified via the names or ID numbers of series, separated by spaces). In
that case this command prints the values of the listed series. By default the data are printed
“by variable”, but if the --byobs flag is added they are printed by observation. When printing
by observation, the default is to show the date (with time-series data) or the observation marker
string (if any) at the start of each line. The --no-dates option suppresses the printing of dates or
markers; a simple observation number is shown instead. See the final paragraph of this entry for
the effect of the --midas option (which applies only to a named list of series).

Chapter 1. Gretl commands 77

If no argument is given (the second variant shown above) then the action is similar to the first case
except that all series in the current dataset are printed. The supported options are as decribed
above.

The third variant (with the object-names argument; see the second example) expects a space-
separated list of names of primary gretl objects other than series (scalars, matrices, strings, bun-
dles, arrays). The value(s) of these objects are displayed. In the case of bundles, their members are
sorted by type and alphabetically.

In the fourth form (third example), string-literal should be a string enclosed in double-quotes (and
there should be nothing else following on the command line). The string in question is printed,
followed by a newline character.

The --range option can be used to control the amount of information printed. The start and stop
(integer) values refer to observations for series and lists, rows for matrices, elements for arrays,
and lines of text for strings. In all cases the minimum start value is 1 and the maximum stop
value is the “row-wise size” of the object in question. Negative values for these indices are taken to
indicate a count back from the end. The indices may be given in numeric form or as the names of
predefined scalar variables. If start is omitted that is taken as an implicit 1 and if stop is omitted
that means go all the way to the end. Note that with series and lists the indices are relative to the
current sample range.

The --tree option is specific to the printing of a gretl bundle: the effect is that if the specified
bundle contains further bundles, or arrays of bundles, their contents are listed. Otherwise only the
top-level members of the bundle are listed.

The --midas option is specific to the printing of a list of series, and moreover it is specific to
datasets that contain one or more high-frequency series, each represented by a MIDAS list. If one
such list is given as argument and this option is appended, the series is printed by observation at
its “native” frequency.

Menu path: /Data/Display values

printf

Arguments: format , args

Prints scalar values, series, matrices, or strings under the control of a format string (providing a
subset of the printf function in the C programming language). Recognized numeric formats are
%e, %E, %f, %g, %G, %d and %x, in each case with the various modifiers available in C. Examples: the
format %.10g prints a value to 10 significant figures; %12.6f prints a value to 6 decimal places,
with a width of 12 characters. Note, however, that in gretl the format %g is a good default choice
for all numerical values; you don’t need to get too complicated. The format %s should be used for
strings.

The format string itself must be enclosed in double quotes. The values to be printed must follow
the format string, separated by commas. These values should take the form of either (a) the names
of variables, (b) expressions that yield some sort of printable result, or (c) the special functions
varname() or date(). The following example prints the values of two variables plus that of a
calculated expression:

ols 1 0 2 3
scalar b = $coeff[2]
scalar se_b = $stderr[2]
printf "b = %.8g, standard error %.8g, t = %.4f\n",
b, se_b, b/se_b

The next lines illustrate the use of the varname and date functions, which respectively print the
name of a variable, given its ID number, and a date string, given a 1-based observation number.

Chapter 1. Gretl commands 78

printf "The name of variable %d is %s\n", i, varname(i)
printf "The date of observation %d is %s\n", j, date(j)

If a matrix argument is given in association with a numeric format, the entire matrix is printed
using the specified format for each element. The same applies to series, except that the range of
values printed is governed by the current sample setting.

The maximum length of a format string is 127 characters. The escape sequences \n (newline), \r
(carriage return), \t (tab), \v (vertical tab) and \\ (literal backslash) are recognized. To print a
literal percent sign, use %%.

As in C, numerical values that form part of the format (width and or precision) may be given directly
as numbers, as in %10.4f, or they may be given as variables. In the latter case, one puts asterisks
into the format string and supplies corresponding arguments in order. For example,

scalar width = 12
scalar precision = 6
printf "x = %*.*f\n", width, precision, x

probit

Arguments: depvar indepvars

Options: --robust (robust standard errors)

--cluster=clustvar (see logit for explanation)

--vcv (print covariance matrix)

--verbose (print details of iterations)

--quiet (don’t print results)

--p-values (show p-values instead of slopes)

--estrella (select pseudo-R-squared variant)

--random-effects (estimates a random effects panel probit model)

--quadpoints=k (number of quadrature points for RE estimation)

Examples: ooballot.inp, oprobit.inp, reprobit.inp

If the dependent variable is a binary variable (all values are 0 or 1) maximum likelihood estimates
of the coefficients on indepvars are obtained via the Newton–Raphson method. As the model is
nonlinear the slopes depend on the values of the independent variables. By default the slopes
with respect to each of the independent variables are calculated (at the means of those variables)
and these slopes replace the usual p-values in the regression output. This behavior can be sup-
pressed by giving the --p-values option. The chi-square statistic tests the null hypothesis that all
coefficients are zero apart from the constant.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber–White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer
product of the gradient. See chapter 10 of Davidson and MacKinnon for details.

By default the pseudo-R-squared statistic suggested by McFadden (1974) is shown, but in the bi-
nary case if the --estrella option is given, the variant recommended by Estrella (1998) is shown
instead. This variant arguably mimics more closely the properties of the regular R2 in the context
of least-squares estimation.

If the dependent variable is not binary but is discrete, then Ordered Probit estimates are obtained.
(If the variable selected as dependent is not discrete, an error is flagged.)

Chapter 1. Gretl commands 79

Probit for panel data

With the --random-effects option, the error term is assumed to be composed of two normally
distributed components: one time-invariant term that is specific to the cross-sectional unit or “in-
dividual” (and is known as the individual effect); and one term that is specific to the particular
observation.

Evaluation of the likelihood for this model involves the use of Gauss-Hermite quadrature for ap-
proximating the value of expectations of functions of normal variates. The number of quadrature
points used can be chosen through the --quadpoints option (the default is 32). Using more points
will increase the accuracy of the results, but at the cost of longer compute time; with many quadra-
ture points and a large dataset estimation may be quite time consuming.

Besides the usual parameter estimates (and associated statistics) relating to the included regres-
sors, certain additional information is presented on estimation of this sort of model:

• lnsigma2: the maximum likelihood estimate of the log of the variance of the individual effect;

• sigma_u: the estimated standard deviation of the individual effect; and

• rho: the estimated share of the individual effect in the composite error variance (also known
as the intra-class correlation).

The Likelihood Ratio test of the null hypothesis that rho equals zero provides a means of assessing
whether the random effects specification is needed. If the null is not rejected that suggests that a
simple pooled probit specification is adequate.

Menu path: /Model/Limited dependent variable/Probit

pvalue

Arguments: dist [params] xval

Examples: pvalue z zscore

pvalue t 25 3.0

pvalue X 3 5.6

pvalue F 4 58 fval

pvalue G shape scale x

pvalue B bprob 10 6

pvalue P lambda x

pvalue W shape scale x

See also mrw.inp, restrict.inp

Computes the area to the right of xval in the specified distribution (z for Gaussian, t for Student’s
t, X for chi-square, F for F , G for gamma, B for binomial, P for Poisson, exp for Exponential, W for
Weibull).

Depending on the distribution, the following information must be given, before the xval: for the
t and chi-square distributions, the degrees of freedom; for F , the numerator and denominator
degrees of freedom; for gamma, the shape and scale parameters; for the binomial distribution, the
“success” probability and the number of trials; for the Poisson distribution, the parameter λ (which
is both the mean and the variance); for the Exponential, a scale parameter; and for the Weibull,
shape and scale parameters. As shown in the examples above, the numerical parameters may be
given in numeric form or as the names of variables.

The parameters for the gamma distribution are sometimes given as mean and variance rather than
shape and scale. The mean is the product of the shape and the scale; the variance is the product
of the shape and the square of the scale. So the scale may be found as the variance divided by the
mean, and the shape as the mean divided by the scale.

Chapter 1. Gretl commands 80

Menu path: /Tools/P-value finder

qlrtest

Options: --limit-to=list (limit test to subset of regressors)

--plot=mode-or-filename (see below)

--quiet (suppress printed output)

For a model estimated on time-series data via OLS, performs the Quandt likelihood ratio (QLR) test
for a structural break at an unknown point in time, with 15 percent trimming at the beginning and
end of the sample period.

For each potential break point within the central 70 percent of the observations, a Chow test is
performed. See chow for details; as with the regular Chow test, this is a robust Wald test if the
original model was estimated with the --robust option, an F-test otherwise. The QLR statistic is
then the maximum of the individual test statistics.

An asymptotic p-value is obtained using the method of Hansen (1997).

Besides the standard hypothesis test accessors $test and $pvalue, $qlrbreak can be used to retrieve
the index of the observation at which the test statistic is maximized.

The --limit-to option can be used to limit the set of interactions with the split dummy variable
in the Chow tests to a subset of the original regressors. The parameter for this option must be a
named list, all of whose members are among the original regressors. The list should not include
the constant.

When this command is run interactively (only), a plot of the Chow test statistic is displayed by
default. This can be adjusted via the --plot option. The acceptable parameters to this option are
none (to suppress the plot); display (to display a plot even when not in interactive mode); or a file
name. The effect of providing a file name is as described for the --output option of the gnuplot
command.

Menu path: Model window, /Tests/QLR test

qqplot

Variants: qqplot y

qqplot y x

Options: --z-scores (see below)

--raw (see below)

--output=filename (send plot to specified file)

Given just one series argument, displays a plot of the empirical quantiles of the selected series
(given by name or ID number) against the quantiles of the normal distribution. The series must
include at least 20 valid observations in the current sample range. By default the empirical quantiles
are plotted against quantiles of the normal distribution having the same mean and variance as the
sample data, but two alternatives are available: if the --z-scores option is given the data are
standardized, while if the --raw option is given the “raw” empirical quantiles are plotted against
the quantiles of the standard normal distribution.

The option --output has the effect of sending the output to the specified file; use “display” to
force output to the screen. See the gnuplot command for more detail on this option.

Given two series arguments, y and x, displays a plot of the empirical quantiles of y against those
of x. The data values are not standardized.

Menu path: /Variable/Normal Q-Q plot

Menu path: /View/Graph specified vars/Q-Q plot

Chapter 1. Gretl commands 81

quantreg

Arguments: tau depvar indepvars

Options: --robust (robust standard errors)

--intervals[=level] (compute confidence intervals)

--vcv (print covariance matrix)

--quiet (suppress printing of results)

Examples: quantreg 0.25 y 0 xlist

quantreg 0.5 y 0 xlist --intervals

quantreg 0.5 y 0 xlist --intervals=.95

quantreg tauvec y 0 xlist --robust

See also mrw_qr.inp

Quantile regression. The first argument, tau, is the conditional quantile for which estimates are
wanted. It may be given either as a numerical value or as the name of a pre-defined scalar variable;
the value must be in the range 0.01 to 0.99. (Alternatively, a vector of values may be given for tau;
see below for details.) The second and subsequent arguments compose a regression list on the
same pattern as ols.

Without the --intervals option, standard errors are printed for the quantile estimates. By default,
these are computed according to the asymptotic formula given by Koenker and Bassett (1978), but
if the --robust option is given, standard errors that are robust with respect to heteroskedasticity
are calculated using the method of Koenker and Zhao (1994).

When the --intervals option is chosen, confidence intervals are given for the parameter estimates
instead of standard errors. These intervals are computed using the rank inversion method, and
in general they are asymmetrical about the point estimates. The specifics of the calculation are
inflected by the --robust option: without this, the intervals are computed on the assumption
of IID errors (Koenker, 1994); with it, they use the robust estimator developed by Koenker and
Machado (1999).

By default, 90 percent confidence intervals are produced. You can change this by appending a
confidence level (expressed as a decimal fraction) to the intervals option, as in --intervals=0.95.

Vector-valued tau: instead of supplying a scalar, you may give the name of a pre-defined matrix. In
this case estimates are computed for all the given tau values and the results are printed in a special
format, showing the sequence of quantile estimates for each regressor in turn.

Menu path: /Model/Robust estimation/Quantile regression

quit

Exits from gretl’s current modality.

• When called from a script, execution of the script is terminated. If the context is gretlcli in
batch mode, gretlcli itself exits, otherwise the program reverts to interactive mode.

• When called from the GUI console, the console window is closed.

• When called from gretlcli in interactive mode the program exits.

Note that this command cannot be called within functions or loops.

In no case does the quit command cause the gretl GUI program to exit. That is done via the Quit
item under the File menu, or Ctrl+Q, or by clicking the close control on the title-bar of the main
gretl window.

Chapter 1. Gretl commands 82

rename

Arguments: series newname

Options: --quiet (suppress printed output)

--case (change case of all series names, see below)

Examples: rename x2 income

rename --case=lower

Without the --case option this command changes the name of series (identified by name or ID
number) to newname. The new name must be of 31 characters maximum, must start with a letter,
and must be composed of only letters, digits, and the underscore character. In addition, it must
not be the name of an existing object of any kind.

The --case option allows changing the case of all series names in the currently open dataset.
When using this option, no series or newname should be provided. The following case types are
supported:

• lower: Convert all series names to lowercase.

• upper: Convert all series names to uppercase.

• camel: Convert all series names to camel case, meaning that underscores are deleted and the
following character (if any) is capitalized. For example, some_thing becomes someThing.

• snake: Convert all series names to snake case, meaning that any capital letters (other than the
first in the name) are converted to lowercase, with an underscore prepended. For example,
someThing becomes some_thing.

Menu path: /Variable/Edit attributes

Other access: Main window pop-up menu (single selection)

reset

Options: --quiet (don’t print the auxiliary regression)

--silent (don’t print anything)

--squares-only (compute the test using only the squares)

--cubes-only (compute the test using only the cubes)

--robust (use robust standard errors in auxiliary regression)

Must follow the estimation of a model via OLS. Carries out Ramsey’s RESET test for model specifi-
cation (nonlinearity) by adding the squares and/or the cubes of the fitted values to the regression
and calculating the F statistic for the null hypothesis that the coefficients on the added terms are
zero. For numerical reasons, the squares and cubes are rescaled using the standard deviation of
the fitted values.

Both the squares and the cubes are added unless one of the options --squares-only or --cubes-only
is given.

The --silent option may be used if one plans to make use of the $test and/or $pvalue accessors
to grab the results of the test.

The --robust option is implicit if the regression to be tested employed robust standard errors.

Menu path: Model window, /Tests/Ramsey’s RESET

Chapter 1. Gretl commands 83

restrict

Options: --quiet (don’t print restricted estimates)

--silent (don’t print anything)

--wald (system estimators only – see below)

--bootstrap (bootstrap the test if possible)

--full (OLS and VECMs only, see below)

Examples: hamilton.inp, restrict.inp

Imposes a set of (usually linear) restrictions on either (a) the model last estimated or (b) a system
of equations previously defined and named. In all cases the set of restrictions should be started
with the keyword “restrict” and terminated with “end restrict”.

In the single equation case the restrictions are always implicitly to be applied to the last model, and
they are evaluated as soon as the restrict block is closed.

In the case of a system of equations (defined via the system command), the initial “restrict” may
be followed by the name of a previously defined system of equations. If this is omitted and the
last model was a system then the restrictions are applied to the last model. By default the restric-
tions are evaluated when the system is next estimated, using the estimate command. But if the
--wald option is given the restriction is tested right away, via a Wald chi-square test on the covari-
ance matrix. Note that this option will produce an error if a system has been defined but not yet
estimated.

Depending on the context, the restrictions to be tested may be expressed in various ways. The
simplest form is as follows: each restriction is given as an equation, with a linear combination of
parameters on the left and a scalar value to the right of the equals sign (either a numerical constant
or the name of a scalar variable).

In the single-equation case, parameters may be referenced in the form b[i], where i represents the
position in the list of regressors (starting at 1), or b[varname], where varname is the name of the
regressor in question. In the system case, parameters are referenced using b plus two numbers in
square brackets. The leading number represents the position of the equation within the system
and the second number indicates position in the list of regressors. For example b[2,1] denotes
the first parameter in the second equation, and b[3,2] the second parameter in the third equation.
The b terms in the equation representing a restriction may be prefixed with a numeric multiplier,
for example 3.5*b[4].

Here is an example of a set of restrictions for a previously estimated model:

restrict
b[1] = 0
b[2] - b[3] = 0
b[4] + 2*b[5] = 1

end restrict

And here is an example of a set of restrictions to be applied to a named system. (If the name of the
system does not contain spaces, the surrounding quotes are not required.)

restrict "System 1"
b[1,1] = 0
b[1,2] - b[2,2] = 0
b[3,4] + 2*b[3,5] = 1

end restrict

In the single-equation case the restrictions are by default evaluated via a Wald test, using the
covariance matrix of the model in question. If the original model was estimated via OLS then the
restricted coefficient estimates are printed; to suppress this, append the --quiet option flag to the

Chapter 1. Gretl commands 84

initial restrict command. As an alternative to the Wald test, for models estimated via OLS or WLS
only, you can give the --bootstrap option to perform a bootstrapped test of the restriction.

In the system case, the test statistic depends on the estimator chosen: a Likelihood Ratio test if the
system is estimated using a Maximum Likelihood method, or an asymptotic F -test otherwise.

Linear restrictions: alternative syntax

There are two alternatives to the method of expressing restrictions described above. First, a set of
g restrictions on a k-vector of parameters, β, may be written compactly as Rβ − q = 0, where R is
an g×kmatrix and q is a g-vector. You can specify a restriction by giving the names of pre-defined,
conformable matrices to be used as R and q, as in

restrict
R = Rmat
q = qvec

end restrict

Second, in a variant that may be useful when restrict is used within a function, you can construct
the set of restriction statements in the form of an array of strings. You then use the inject
keyword with the name of the array. Here’s a simple example:

strings RS = array(2)
RS[1] = "b[1,2] = 0"
RS[2] = "b[2,1] = 0"
restrict
inject RS

end restrict

In actual usage of this method one would likely use sprintf to construct the strings, based on input
to a function.

Nonlinear restrictions

If you wish to test a nonlinear restriction (this is currently available for single-equation models
only) you should give the restriction as the name of a function, preceded by “rfunc = ”, as in

restrict
rfunc = myfunction

end restrict

The constraint function should take a single const matrix argument; this will be automatically
filled out with the parameter vector. And it should return a vector which is zero under the null hy-
pothesis, non-zero otherwise. The length of the vector is the number of restrictions. This function
is used as a “callback” by gretl’s numerical Jacobian routine, which calculates a Wald test statistic
via the delta method.

Here is a simple example of a function suitable for testing one nonlinear restriction, namely that
two pairs of parameter values have a common ratio.

function matrix restr (const matrix b)
matrix v = b[1]/b[2] - b[4]/b[5]
return v

end function

On successful completion of the restrict command the accessors $test and $pvalue give the test
statistic and its p-value.

Chapter 1. Gretl commands 85

When testing restrictions on a single-equation model estimated via OLS, or on a VECM, the --full
option can be used to set the restricted estimates as the “last model” for the purposes of further
testing or the use of accessors such as $coeff and $vcv. Note that some special considerations
apply in the case of testing restrictions on Vector Error Correction Models. Please see chapter 33
of the Gretl User’s Guide for details.

Menu path: Model window, /Tests/Linear restrictions

rmplot

Argument: series

Options: --trim (see below)

--quiet (suppress printed output)

--output=filename (see below)

Range–mean plot: this command creates a simple graph to help in deciding whether a time series,
y(t), has constant variance or not. We take the full sample t=1,...,T and divide it into small sub-
samples of arbitrary size k. The first subsample is formed by y(1),...,y(k), the second is y(k+1), ...,
y(2k), and so on. For each subsample we calculate the sample mean and range (= maximum minus
minimum), and we construct a graph with the means on the horizontal axis and the ranges on the
vertical. So each subsample is represented by a point in this plane. If the variance of the series is
constant we would expect the subsample range to be independent of the subsample mean; if we see
the points approximate an upward-sloping line this suggests the variance of the series is increasing
in its mean; and if the points approximate a downward sloping line this suggests the variance is
decreasing in the mean.

Besides the graph, gretl displays the means and ranges for each subsample, along with the slope
coefficient for an OLS regression of the range on the mean and the p-value for the null hypothesis
that this slope is zero. If the slope coefficient is significant at the 10 percent significance level then
the fitted line from the regression of range on mean is shown on the graph. The t-statistic for the
null, and the corresponding p-value, are recorded and may be retrieved using the accessors $test
and $pvalue respectively.

If the --trim option is given, the minimum and maximum values in each sub-sample are discarded
before calculating the mean and range. This makes it less likely that outliers will distort the analy-
sis.

If the --quiet option is given, no graph is shown and no output is printed; only the t-statistic and
p-value are recorded. Otherwise the form of the plot can be controlled via the --output option;
this works as described in connection with the gnuplot command.

Menu path: /Variable/Range-mean graph

run

Argument: filename

Executes the commands in filename then returns control to the interactive prompt. This command
is intended for use with the command-line program gretlcli, or at the “gretl console” in the GUI
program.

See also include.

Menu path: Run icon in script window

Chapter 1. Gretl commands 86

runs

Argument: series

Options: --difference (use first difference of variable)

--equal (positive and negative values are equiprobable)

Carries out the nonparametric “runs” test for randomness of the specified series, where runs are
defined as sequences of consecutive positive or negative values. If you want to test for randomness
of deviations from the median, for a variable named x1 with a non-zero median, you can do the
following:

series signx1 = x1 - median(x1)
runs signx1

If the --difference option is given, the variable is differenced prior to the analysis, hence the runs
are interpreted as sequences of consecutive increases or decreases in the value of the variable.

If the --equal option is given, the null hypothesis incorporates the assumption that positive and
negative values are equiprobable, otherwise the test statistic is invariant with respect to the “fair-
ness” of the process generating the sequence, and the test focuses on independence alone.

Menu path: /Tools/Nonparametric tests

scatters

Arguments: yvar ; xvars or yvars ; xvar

Options: --with-lines (create line graphs)

--matrix=name (plot columns of named matrix)

--output=filename (send output to specified file)

Examples: scatters 1 ; 2 3 4 5

scatters 1 2 3 4 5 6 ; 7

scatters y1 y2 y3 ; x --with-lines

Generates pairwise graphs of yvar against all the variables in xvars, or of all the variables in yvars
against xvar. The first example above puts variable 1 on the y-axis and draws four graphs, the first
having variable 2 on the x-axis, the second variable 3 on the x-axis, and so on. The second example
plots each of variables 1 through 6 against variable 7 on the x-axis. Scanning a set of such plots
can be a useful step in exploratory data analysis. The maximum number of plots is 16; any extra
variable in the list will be ignored.

By default the data are shown as points, but if you give the --with-lines flag they will be line
graphs.

For details on usage of the --output option, please see the gnuplot command.

If a named matrix is specified as the data source the x and y lists should be given as 1-based
column numbers. Alternatively, if no lists are given, all the columns are plotted against time or an
index variable.

See also tsplots for a simple means of producing multiple time-series plots, and gridplot for a more
flexible way of combining plots in a grid.

Menu path: /View/Multiple graphs/X-Y scatters

sdiff

Argument: varlist

The seasonal difference of each variable in varlist is obtained and the result stored in a new variable
with the prefix sd_. This command is available only for seasonal time series.

Chapter 1. Gretl commands 87

Menu path: /Add/Seasonal differences of selected variables

set

Variants: set variable value

set --to-file=filename

set --from-file=filename

set stopwatch

set

Examples: set svd on

set csv_delim tab

set horizon 10

set --to-file=mysettings.inp

The most common use of this command is the first variant shown above, where it is used to set the
value of a selected program parameter. This is discussed in detail below. The other uses are: with
--to-file, to write a script file containing all the current parameter settings; with --from-file
to read a script file containing parameter settings and apply them to the current session; with
stopwatch to zero the gretl “stopwatch” which can be used to measure CPU time (see the entry for
the $stopwatch accessor); or, if the word set is given alone, to print the current settings.

Values set via this comand remain in force for the duration of the gretl session unless they are
changed by a further call to set. The parameters that can be set in this way are enumerated below.
Note that the settings of hc_version, hac_lag and hac_kernel are used when the --robust
option is given to an estimation command.

The available settings are grouped under the following categories: program interaction and be-
havior, numerical methods, random number generation, robust estimation, filtering, time series
estimation, and interaction with GNU R.

Program interaction and behavior

These settings are used for controlling various aspects of the way gretl interacts with the user.

• workdir: path. Sets the default directory for writing and reading files, whenever full paths
are not specified.

• use_cwd: on or off (the default). Governs the setting of workdir at start-up: if it’s on, the
working directory is inherited from the shell, otherwise it is set to whatever was selected in
the previous gretl session.

• echo: off or on (the default). Suppress or resume the echoing of commands in gretl’s output.

• messages: off or on (the default). Suppress or resume the printing of non-error messages
associated with various commands, for example when a new variable is generated or when
the sample range is changed.

• verbose: off, on (the default) or comments. Acts as a “master switch” for echo and messages
(see above), turning them both off or on simultaneously. The comments argument turns off
echo and messages but preserves printing of comments in a script.

• warnings: off or on (the default). Suppress or resume the printing of warning messages
when numerical problems arise, for example a computation produces non-finite values or the
convergence of an optimizer is questionable.

• csv_delim: either comma (the default), space, tab or semicolon. Sets the column delimiter
used when saving data to file in CSV format.

Chapter 1. Gretl commands 88

• csv_write_na: the string used to represent missing values when writing data to file in CSV
format. Maximum 7 characters; the default is NA.

• csv_read_na: the string taken to represent missing values (NAs) when reading data in CSV
format. Maximum 7 characters. The default depends on whether a data column is found to
contain numerical data (mostly) or string values. For numerical data the following are taken
as indicating NAs: an empty cell, or any of the strings NA, N.A., na, n.a., N/A, #N/A, NaN,
.NaN, ., .., -999, and -9999. For string-valued data only a blank cell, or a cell containing an
empty string, is counted as NA. These defaults can be reimposed by giving default as the
value for csv_read_na. To specify that only empty cells are read as NAs, give a value of "".
Note that empty cells are always read as NAs regardless of the setting of this variable.

• csv_digits: a positive integer specifying the number of significant digits to use when writ-
ing data in CSV format. By default up to 15 digits are used depending on the precision of
the original data. Note that CSV output employs the C library’s fprintf function with “%g”
conversion, which means that trailing zeros are dropped.

• display_digits: an integer from 3 to 6, specifying the number of significant digits to use
when displaying regression coefficients and standard errors (the default being 6). This setting
can also be used to limit the number of digits shown by the summary command; in this case
the default (and also the maximum) is 5.

• mwrite_g: on or off (the default). When writing a matrix to file as text, gretl by default
uses scientific notation with 18-digit precision, hence ensuring that the stored values are a
faithful representation of the numbers in memory. When writing primary data with no more
than 6 digits of precision it may be preferable to use %g format for a more compact and
human-readable file; you can make this switch via set mwrite_g on.

• force_decpoint: on or off (the default). Force gretl to use the decimal point character, in a
locale where another character (most likely the comma) is the standard decimal separator.

• loop_maxiter: one non-negative integer value (default 100000). Sets the maximum number
of iterations that a while loop is allowed before halting (see loop). Note that this setting only
affects the while variant; its purpose is to guard against inadvertently infinite loops. Setting
this value to 0 has the effect of disabling the limit; use with caution.

• max_verbose: off (the default), on or full. Controls the verbosity of commands and func-
tions that use numerical optimization methods. The on choice applies only to functions (such
as BFGSmax and NRmax) which work silently by default; the effect is to print basic iteration
information. The full setting can be used to trigger more detailed output, including param-
eter values and their respective gradient for the objective function at each iteration. This
choice applies both to functions of the above-mentioned sort and to commands that rely on
numerical optimization such as arima, probit and mle. In the case of commands the effect is
to make their --verbose option produce more detail. See also chapter 37 of the Gretl User’s
Guide.

• debug: 1, 2 or 0 (the default). This is for use with user-defined functions. Setting debug to 1
is equivalent to turning messages on within all such functions; setting this variable to 2 has
the additional effect of turning on max_verbose within all functions.

• shell_ok: on or off (the default). Enable launching external programs from gretl via the
system shell. This is disabled by default for security reasons, and can only be enabled via
the graphical user interface (Tools/Preferences/General). However, once set to on, this setting
will remain active for future sessions until explicitly disabled.

• bfgs_verbskip: one integer. This setting affects the behavior of the --verbose option to
those commands that use BFGS as an optimization algorithm and is used to compact output.
if bfgs_verbskip is set to, say, 3, then the --verbose switch will only print iterations 3, 6, 9
and so on.

Chapter 1. Gretl commands 89

• skip_missing: on (the default) or off. Controls gretl’s behavior when contructing a matrix
from data series: the default is to skip data rows that contain one or more missing values but
if skip_missing is set off missing values are converted to NaNs.

• matrix_mask: the name of a series, or the keyword null. Offers greater control than skip_missing
when constructing matrices from series: the data rows selected for matrices are those with
non-zero (and non-missing) values in the specified series. The selected mask remains in force
until it is replaced, or removed via the null keyword.

• quantile_type: must be one of Q6 (the default), Q7 or Q8. Selects the specific method used
by the quantile function. For details see Hyndman and Fan (1996) or the Wikipedia entry at
https://en.wikipedia.org/wiki/Quantile.

• huge: a large positive number (by default, 1.0E100). This setting controls the value returned
by the accessor $huge.

• assert: off (the default), warn or stop. Controls the consequences of failure (return value
of 0) from the assert function.

• datacols: an integer from 1 to 15, with default value 5. Sets the maximum number of series
shown side-by-side when data are displayed by observation.

• plot_collection: on, auto or off. This setting affects the way plots are displayed during
interactive use. If it’s on, plots of the same pixel size are gathered in a “plot collection”, that
is a single output window in which you can browse through the various plots going back and
forth. With the off setting, instead, a different window for each plot will be generated, as
in older gretl versions. Finally, the auto setting has the effect of enabling the plot collection
mode only for graphs that are generated within 1.25 seconds from one another (for example,
as a result of executing plotting commands in a loop).

Numerical methods

These settings are used for controlling the numerical algorithms that gretl uses for estimation.

• optimizer: either auto (the default), BFGS or newton. Sets the optimization algorithm used
for various ML estimators, in cases where both BFGS and Newton–Raphson are applicable. The
default is to use Newton–Raphson where an analytical Hessian is available, otherwise BFGS.

• bhhh_maxiter: one integer, the maximum number of iterations for gretl’s internal BHHH
routine, which is used in the arma command for conditional ML estimation. If convergence is
not achieved after bhhh_maxiter, the program returns an error. The default is set at 500.

• bhhh_toler: one floating point value, or the string default. This is used in gretl’s internal
BHHH routine to check if convergence has occurred. The algorithm stops iterating as soon
as the increment in the log-likelihood between iterations is smaller than bhhh_toler. The
default value is 1.0E−06; this value may be re-established by typing default in place of a
numeric value.

• bfgs_maxiter: one integer, the maximum number of iterations for gretl’s BFGS routine,
which is used for mle, gmm and several specific estimators. If convergence is not achieved
in the specified number of iterations, the program returns an error. The default value de-
pends on the context, but is typically of the order of 500.

• bfgs_toler: one floating point value, or the string default. This is used in gretl’s BFGS
routine to check if convergence has occurred. The algorithm stops as soon as the relative
improvement in the objective function between iterations is smaller than bfgs_toler. The
default value is the machine precision to the power 3/4; this value may be re-established by
typing default in place of a numeric value.

https://en.wikipedia.org/wiki/Quantile

Chapter 1. Gretl commands 90

• bfgs_maxgrad: one floating point value. This is used in gretl’s BFGS routine to check if the
norm of the gradient is reasonably close to zero when the bfgs_toler criterion is met. A
warning is printed if the norm of the gradient exceeds 1; an error is flagged if the norm
exceeds bfgs_maxgrad. At present the default is the permissive value of 5.0.

• bfgs_richardson: on or off (the default). Use Richardson extrapolation when computing
numerical derivatives in the context of BFGS maximization.

• initvals: the name of a predefined matrix. Allows manual setting of the initial parameter
vector for certain estimation commands that involve numerical optimization: arma, garch,
logit and probit, tobit and intreg, biprobit, duration, poisson, negbin, and also when
imposing certain sorts of restriction associated with VECMs. Unlike other settings, initvals
is not persistent: it resets to the default initializer after its first use. For details in connection
with ARMA estimation see chapter 31 of the Gretl User’s Guide.

• lbfgs: on or off (the default). Use the limited-memory version of BFGS (L-BFGS-B) instead of
the ordinary algorithm. This may be advantageous when the function to be maximized is not
globally concave.

• lbfgs_mem: an integer value in the range 3 to 20 (with a default value of 8). This determines
the number of corrections used in the limited memory matrix when L-BFGS-B is employed.

• nls_toler: a floating-point value. Sets the tolerance used in judging whether or not conver-
gence has occurred in nonlinear least squares estimation using the nls command. The default
value is the machine precision to the power 3/4; this value may be re-established by typing
default in place of a numeric value.

• svd: on or off (the default). Use SVD rather than Cholesky or QR decomposition in least
squares calculations. This option applies to the mols function as well as various internal
calculations, but not to the regular ols command.

• force_qr: on or off (the default). This applies to the ols command. By default this command
computes OLS estimates using Cholesky decomposition (the fastest method), with a fallback
to QR if the data seem too ill-conditioned. You can use force_qr to skip the Cholesky step;
in “doubtful” cases this may ensure greater accuracy.

• fcp: on or off (the default). Use the algorithm of Fiorentini, Calzolari and Panattoni rather
than native gretl code when computing GARCH estimates.

• gmm_maxiter: one integer, the maximum number of iterations for gretl’s gmm command
when in iterated mode (as opposed to one- or two-step). The default value is 250.

• nadarwat_trim: one integer, the trim parameter used in the nadarwat function.

• fdjac_quality: one integer (0, 1 or 2), the algorithm used by the fdjac function; the default
is 0.

• gmp_bits: one integer, which should be an integral power of 2 (default and minimum value
256, maximum 8192). Controls the number of bits used to represent a floating point number
when GMP (the GNU Multiple Precision Arithmetic Library) is called, primarily via the mpols
command. Larger values give greater precision at the cost of longer compute time. This
setting can also be controlled by the environment variable GRETL_MP_BITS.

Random number generation

• seed: an unsigned integer or the keyword auto. Sets the seed for the pseudo-random number
generator. By default this is set from the system time; if you want to generate repeatable
sequences of random numbers you must set the seed manually. To reset the seed to a time-
based automatic value, use auto.

Chapter 1. Gretl commands 91

Robust estimation

• bootrep: an integer. Sets the number of replications for the restrict command with the
--bootstrap option.

• garch_vcv: unset, hessian, im (information matrix) , op (outer product matrix), qml (QML
estimator), bw (Bollerslev–Wooldridge). Specifies the variant that will be used for estimating
the coefficient covariance matrix, for GARCH models. If unset is given (the default) then the
Hessian is used unless the “robust” option is given for the garch command, in which case QML
is used.

• arma_vcv: hessian (the default) or op (outer product matrix). Specifies the variant to be used
when computing the covariance matrix for ARIMA models.

• force_hc: off (the default) or on. By default, with time-series data and when the --robust
option is given with ols, the HAC estimator is used. If you set force_hc to “on”, this forces
calculation of the regular Heteroskedasticity Consistent Covariance Matrix (HCCM), which
does not take autocorrelation into account. Note that VARs are treated as a special case: when
the --robust option is given the default method is regular HCCM, but the --robust-hac flag
can be used to force the use of a HAC estimator.

• robust_z: off (the default) or on. This controls the distribution used when calculating p-
values based on robust standard errors in the context of least-squares estimators. By default
gretl uses the Student t distribution but if robust_z is turned on the normal distribution is
used.

• hac_lag: nw1 (the default), nw2, nw3 or an integer. Sets the maximum lag value or bandwidth,
p, used when calculating HAC (Heteroskedasticity and Autocorrelation Consistent) standard
errors using the Newey-West approach, for time series data. nw1 and nw2 represent two variant
automatic calculations based on the sample size, T : for nw1, p = 0.75 × T 1/3, and for nw2,
p = 4 × (T/100)2/9. nw3 calls for data-based bandwidth selection. See also qs_bandwidth
and hac_prewhiten below.

• hac_kernel: bartlett (the default), parzen, or qs (Quadratic Spectral). Sets the kernel, or
pattern of weights, used when calculating HAC standard errors.

• hac_prewhiten: on or off (the default). Use Andrews-Monahan prewhitening and re-coloring
when computing HAC standard errors. This also implies use of data-based bandwidth selec-
tion.

• hac_missvals: es (the default), am or off. Sets the policy regarding calculation of HAC
standard errors when the estimation sample includes incomplete observations: es invokes the
Equal Spacing method of Datta and Du (2012); am selects the Amplitude Modulation method
of Parzen (1963); and off causes gretl to refuse such estimation. See chapter 22 of the Gretl
User’s Guide for details.

• hc_version: 0, 1, 2, 3 or 3a. Sets the variant used when calculating Heteroskedasticity Con-
sistent standard errors with cross-sectional data. The first four options correspond to the
HC0, HC1, HC2 and HC3 discussed by Davidson and MacKinnon in Econometric Theory and
Methods, chapter 5. HC0 produces what are usually called “White’s standard errors”. Variant
3a is the MacKinnon–White “jackknife” procedure. The default setting is normally 1, but this
can be changed in the GUI client, via the “HCCME” tab under “/Tools/Preferences/General”.
Note that a setting made via the GUI persists across gretl sessions, as opposed to use of the
set command which just affects the current session.

• panel_robust: arellano (the default), pcse or scc. This selects the robust covariance matrix
estimator for use with panel-data models. See the panel command and chapter 22 of the Gretl
User’s Guide for details.

• qs_bandwidth: Bandwidth for HAC estimation in the case where the Quadratic Spectral kernel
is selected. (Unlike the Bartlett and Parzen kernels, the QS bandwidth need not be an integer.)

Chapter 1. Gretl commands 92

Time series

• horizon: one integer (the default is based on the frequency of the data). Sets the horizon for
impulse responses and forecast variance decompositions in the context of vector autoregres-
sions.

• vecm_norm: phillips (the default), diag, first or none. Used in the context of VECM esti-
mation via the vecm command for identifying the cointegration vectors. See the chapter 33
of the Gretl User’s Guide for details.

• boot_iters: one integer, B. Sets the number of bootstrap iterations used when computing
impulse response functions with confidence intervals. The default is 1999. It is recommended
that B + 1 is evenly divisible by 100α/2, so for example with α = 0.1 B + 1 should be a multiple
of 5. The minimum acceptable value is 499.

Interaction with R

• R_lib: on (the default) or off. When sending instructions to be executed by R, use the R
shared library by preference to the R executable, if the library is available.

• R_functions: off (the default) or on. Recognize functions defined in R as if they were native
functions (the namespace prefix “R.” is required). See chapter 44 of the Gretl User’s Guide for
details on this and the previous item.

Miscellaneous

• mpi_use_smt: on or off (the default). This switch affects the default number of processes
launched in an mpi block within a script. If the switch is off the default number of processes
equals the number of physical cores on the local machine; if it’s on the default is the maximum
number of threads, which will be twice the number of physical cores if the cores support SMT
(Simultaneous MultiThreading, also known as Hyper-Threading). This applies only if the user
has not specified a number of processes, either directly or indirectly (by specifying a hosts
file for use with MPI).

• graph_theme: a string, one of altpoints, classic, dark2 (the current default), ethan,
iwanthue or sober. This sets the “theme” used for graphs produced by gretl. The classic
option reverts to the single theme that was in force prior to version 2020c of gretl.

setinfo

Argument: series

Options: --description=string (set description)

--graph-name=string (set graph name)

--discrete (mark series as discrete)

--continuous (mark series as continuous)

--coded (mark as an encoding)

--numeric (mark as not an encoding)

--midas (mark as component of high-frequency data)

Examples: setinfo x1 --description="Description of x1"

setinfo y --graph-name="Some string"

setinfo z --discrete

If the options --description or --graph-name are invoked the argument must be a single series,
otherwise it may be a list of series in which case it operates on all members of the list. This
command sets up to four attributes as follows.

Chapter 1. Gretl commands 93

If the --description flag is given followed by a string in double quotes, that string is used to set
the variable’s descriptive label. This label is shown in response to the labels command, and is also
shown in the main window of the GUI program.

If the --graph-name flag is given followed by a quoted string, that string will be used in place of
the variable’s name in graphs.

If one or other of the --discrete or --continuous option flags is given, the variable’s numerical
character is set accordingly. The default is to treat all series as continuous; setting a series as
discrete affects the way the variable is handled in other commands and functions, such as for
example freq or dummify .

If one or other of the --coded or --numeric option flags is given, the status of the given series is
set accordingly. The default is to treat all numerical values as meaningful as such, at least in an
ordinal sense; setting a series as coded means that the numerical values are an arbitrary encoding
of qualitative characteristics.

The --midas option sets a flag indicating that a given series holds data of a higher frequency than
the base frequency of the dataset; for example, the dataset is quarterly and the series holds values
for month 1, 2 or 3 of each quarter. (MIDAS = Mixed Data Sampling.)

Menu path: /Variable/Edit attributes

Other access: Main window pop-up menu

setmiss

Arguments: value [varlist]

Examples: setmiss -1

setmiss 100 x2

Get the program to interpret some specific numerical data value (the first parameter to the com-
mand) as a code for “missing”, in the case of imported data. If this value is the only parameter, as
in the first example above, the interpretation will be applied to all series in the data set. If value is
followed by a list of variables, by name or number, the interpretation is confined to the specified
variable(s). Thus in the second example the data value 100 is interpreted as a code for “missing”,
but only for the variable x2.

Menu path: /Data/Set missing value code

setobs

Variants: setobs periodicity startobs

setobs unitvar timevar --panel-vars

Options: --cross-section (interpret as cross section)

--time-series (interpret as time series)

--special-time-series (see below)

--stacked-cross-section (interpret as panel data)

--stacked-time-series (interpret as panel data)

--panel-vars (use index variables, see below)

--panel-time (see below)

--panel-groups (see below)

Examples: setobs 4 1990:1 --time-series

setobs 12 1978:03

setobs 1 1 --cross-section

setobs 20 1:1 --stacked-time-series

setobs unit year --panel-vars

Chapter 1. Gretl commands 94

This command forces the program to interpret the current data set as having a specified structure.

In the first form of the command the periodicity, which must be an integer, represents frequency in
the case of time-series data (1 = annual; 4 = quarterly; 12 = monthly; 52 = weekly; 5, 6, or 7 = daily;
24 = hourly). In the case of panel data the periodicity means the number of lines per data block:
this corresponds to the number of cross-sectional units in the case of stacked cross-sections, or
the number of time periods in the case of stacked time series. In the case of simple cross-sectional
data the periodicity should be set to 1.

The starting observation represents the starting date in the case of time series data. Years may be
given with two or four digits; subperiods (for example, quarters or months) should be separated
from the year with a colon. In the case of panel data the starting observation should be given as
1:1; and in the case of cross-sectional data, as 1. Starting observations for daily or weekly data
should be given in the form YYYY-MM-DD (or simply as 1 for undated data).

Certain time-series periodicities have standard interpretations—for example, 12 = monthly and 4
= quarterly. If you have unusual time-series data to which the standard interpretation does not
apply, you can signal this by giving the --special-time-series option. In that case gretl will not
(for example) report your frequency-12 data as being monthly.

If no explicit option flag is given to indicate the structure of the data the program will attempt to
guess the structure from the information given.

The second form of the command (which requires the --panel-vars flag) may be used to impose a
panel interpretation when the data set contains variables that uniquely identify the cross-sectional
units and the time periods. The data set will be sorted as stacked time series, by ascending values
of the units variable, unitvar.

Panel-specific options

The --panel-time and --panel-groups options can only be used with a dataset which has already
been defined as a panel.

The purpose of --panel-time is to set extra information regarding the time dimension of the
panel. This should be given on the pattern of the first form of setobs noted above. For example,
the following may be used to indicate that the time dimension of a panel is quarterly, starting in
the first quarter of 1990.

setobs 4 1990:1 --panel-time

The purpose of --panel-groups is to create a string-valued series holding names for the groups
(individuals, cross-sectional units) in the panel. (This will be used where appropriate in panel
graphs.) With this option you supply either one or two arguments as follows.

First case: the (single) argument is the name of a string-valued series. If the number of distinct
values equals the number of groups in the panel this series is used to define the group names. If
necessary, the numerical content of the series will be adjusted such that the values are all 1s for
the first group, all 2s for the second, and so on. If the number of string values doesn’t match the
number of groups an error is flagged.

Second case: the first argument is the name of a series and the second is a string literal or variable
holding a name for each group. The series will be created if it does not already exist. If the second
argument is a string literal or string variable the group names should be separated by spaces; if a
name includes spaces it should be wrapped in backslash-escaped double-quotes. Alternatively the
second argument may be an array of strings.

For example, the following will create a series named country in which the names in cstrs are
each repeated T times, T being the time-series length of the panel.

string cstrs = sprintf("France Germany Italy \"United Kingdom\"")
setobs country cstrs --panel-groups

Chapter 1. Gretl commands 95

Menu path: /Data/Dataset structure

setopt

Arguments: command [action] options

Examples: setopt mle --hessian

setopt ols persist --quiet

setopt ols clear

See also gdp_midas.inp

This command enables the pre-setting of options for a specified command. Ordinarily this is not
required, but it may be useful for the writers of hansl functions when they wish to make certain
command options conditional on the value of an argument supplied by the caller.

For example, suppose a function offers a boolean “quiet” switch, whose intended effect is to
suppress the printing of results from a certain regression executed within the function. In that
case one might write:

if quiet
setopt ols --quiet

endif
ols ...

The --quiet option will then be applied to the next ols command if and only if the variable quiet
has a non-zero value.

By default, options set in this way apply only to the following instance of command; they are not
persistent. However if you give persist as the value for action the options will continue to apply
to the given command until further notice. The antidote to the persist action is clear: this erases
any stored setting for the specified command.

It should be noted that options set via setopt are compounded with any options attached to
the target command directly. So for example one might append the --hessian option to an mle
command unconditionally but use setopt to add --quiet conditionally.

shell

Argument: shellcommand

Examples: ! ls -al

! dir c:\users

launch notepad

launch emacs myfile.txt

The facility described here is not activated by default. See below for details.

An exclamation mark, !, at the beginning of a command line is interpreted as an escape to the
user’s shell. Thus arbitrary shell commands can be executed from within gretl. The shellcommand
argument is passed to /bin/sh on unix-type systems such as Linux and macOS or to cmd.exe on
MS Windows. It is executed in synchronous mode—gretl waits for it to complete before proceeding.
If the command outputs any text this is printed to the console or script output window.

A variant of synchronous shell access allows the user to “grab” the output of a command into a
string variable. This is achieved by wrapping the command in parentheses, preceded by a dollar
sign, as in

string s = $(ls -l $HOME)

Chapter 1. Gretl commands 96

The launch keyword, on the other hand, executes an external program asynchronously (without
waiting for completion), as in the third and fourth examples above. This is designed for opening
an application in interactive mode. The user’s PATH is searched for the specified executable. On MS
Windows the command is executed directly, not passed to cmd.exe (so environment variables are
not expanded automatically).

Activation

For reasons of security the shell-access facility is not enabled by default. To activate it, check the
box titled “Allow shell commands” under Tools/Preferences/General in the GUI program. This also
makes shell commands available in the command-line program (and is the only way to do so).

smpl

Variants: smpl startobs endobs

smpl +i -j

smpl dumvar --dummy

smpl condition --restrict

smpl --no-missing [varlist]

smpl --no-all-missing [varlist]

smpl --contiguous [varlist]

smpl n --random

smpl full

smpl

Options: --dummy (argument is a dummy variable)

--restrict (apply boolean restriction)

--replace (replace any existing boolean restriction)

--no-missing (restrict to valid observations)

--no-all-missing (omit empty observations (see below))

--contiguous (see below)

--random (form random sub-sample)

--permanent (see below)

--preserve-panel (panel data: see below)

--unit (panel data: sample in cross-sectional dimension)

--time (panel data: sample in time-series dimension)

--dates (interpret observation numbers as dates)

--quiet (don’t report sample range)

Examples: smpl 3 10

smpl 1960:2 1982:4

smpl +1 -1

smpl x > 3000 --restrict

smpl y > 3000 --restrict --replace

smpl 100 --random

This command can be used only when a dataset is in place. When no arguments are given, it
displays the current sample range, otherwise it sets the sample range. The range can be defined in
several ways. In the first alternate form (and the first two examples) above, startobs and endobs
must be consistent with the periodicity of the data. Either one may be replaced by a semicolon to
leave the value unchanged. (For more on startobs and endobs see the section titled “Dates versus
sequential indices” below.) In the second form, the integers i and j (which may be positive or

Chapter 1. Gretl commands 97

negative, and must be signed) are taken as offsets relative to the existing sample range. In the third
form dummyvar must be an indicator variable with values 0 or 1 at each observation; the sample
will be restricted to observations where the value is 1. The fourth form, using --restrict, restricts
the sample to observations that satisfy the given Boolean condition.

The options --no-missing and --no-all-missing may be used to exclude from the sample ob-
servations for which data are missing. The first variant excludes those rows in the dataset for which
at least one variable has a missing value, while the second excludes just those rows on which all
variables have missing values. In each case the test is confined to the variables in varlist if this
argument is given, otherwise it is applied to all series—with the qualification that in the case of
--no-all-missing and no varlist, the generic variables index and time are ignored.

The --contiguous form of smpl is intended for use with time series data. The effect is to trim any
observations at the start and end of the current sample range that contain missing values (either
for the variables in varlist, or for all data series if no varlist is given). Then a check is performed to
see if there are any missing values in the remaining range; if so, an error is flagged.

With the --random flag, the specified number of cases are selected from the current dataset at
random (without replacement). If you wish to be able to replicate this selection you should set the
seed for the random number generator first (see the set command).

The final form, smpl full, restores the full data range.

Note that sample restrictions are, by default, cumulative: the baseline for any smpl command is
the current sample. If you wish the command to act so as to replace any existing restriction you
can add the option flag --replace to the end of the command. (But this option is not compatible
with the --contiguous option.)

The internal variable obs may be used with the --restrict form of smpl to exclude particular
observations from the sample. For example

smpl obs!=4 --restrict

will drop just the fourth observation. If the data points are identified by labels,

smpl obs!="USA" --restrict

will drop the observation with label “USA”.

One point should be noted about the --dummy, --restrict and --no-missing forms of smpl:
“structural” information in the data file (regarding the time series or panel nature of the data)
is likely to be lost when this command is issued. You may reimpose structure with the setobs
command, but also see the --preserve-panel option below.

Dates versus sequential indices

The --dates option can be used to resolve a potential ambiguity in the interpretation of startobs
and endobs in the case of annual time-series data. For example, should 2010 be taken to refer to
the year 2010, or to the two-thousand-and-tenth observation? In most cases this should come out
right automatically but you can force the date interpretation if needed. This option can also be
used with dated daily data, to get smpl to interpret, for example, 20100301 as the first of March
2010 rather than a plain sequential index. Note that this ambiguity does not arise with time series
frequencies other than annual and daily; dates such as 1980:3 (third quarter of 1980) and 2020:03
(March 2020) cannot be confused with plain indices.

Panel-specific options

The --unit and --time options are specific to panel data. They allow you to specify, respectively,
a range of “units” or time-periods. For example:

Chapter 1. Gretl commands 98

limit the sample to the first 50 units
smpl 1 50 --unit
limit the sample to periods 2 to 20
smpl 2 20 --time

If the time dimension of a panel dataset has been specified via the setobs command with the
--panel-time option, smpl with the --time option can be expressed in terms of dates rather than
plain observation numbers. Here’s an example:

specify panel time as quarterly, starting in Q1 of 1990
setobs 4 1990:1 --panel-time
limit the sample to 2000:1 to 2007:1
smpl 2000:1 2007:1 --time

In gretl, a panel dataset must always be “nominally balanced”—that is, each unit must have the
same number of data rows, even if some rows contain nothing but NAs. Sub-sampling via the
--restrict or --dummy options may destroy this structure. In that case the --preserve-panel
flag can be added to request that a nominally balanced panel is reconstituted, via the insertion of
“missing rows” if needed.

Permanent versus temporary sampling

By default, restrictions on the current sample range can be undone: you can restore the full dataset
via smpl full. However, the --permanent flag can be used to substitute the restricted dataset for
the original. If you give the --permanent option with no other arguments or options the effect is
to shrink the dataset to the current sample range.

Please see chapter 5 of the Gretl User’s Guide for further details.

Menu path: /Sample

spearman

Arguments: series1 series2

Option: --verbose (print ranked data)

Prints Spearman’s rank correlation coefficient for the series series1 and series2. The variables do
not have to be ranked manually in advance; the function takes care of this.

The automatic ranking is from largest to smallest (i.e. the largest data value gets rank 1). If you
need to invert this ranking, create a new variable which is the negative of the original. For example:

series altx = -x
spearman altx y

Menu path: /Tools/Nonparametric tests/Correlation

square

Argument: varlist

Option: --cross (generate cross-products as well as squares)

Generates new series which are squares of the series in varlist (plus cross-products if the --cross
option is given). For example, square x y will generate sq_x = x squared, sq_y = y squared and
(optionally) x_y = x times y. If a particular variable is a dummy variable it is not squared because
we will get the same variable.

Menu path: /Add/Squares of selected variables

Chapter 1. Gretl commands 99

stdize

Argument: varlist

Options: --no-df-corr (no degrees of freedom correction)

--center-only (don’t divide by s.d.)

By default a standardized version of each of the series in varlist is obtained and the result stored
in a new series with the prefix s_. For example, stdize x y creates the new series s_x and s_y,
each of which is centered and divided by its sample standard deviation (with a degrees of freedom
correction of 1).

If the --no-df-corr option is given no degrees of freedom correction is applied; the standard
deviation used is the maximum likelihood estimator. If --center-only is given the series just
have their means subtracted, and in that case the output names have prefix c_ rather than s_.

The functionality of this command is available in somewhat more flexible form via the stdize func-
tion.

Menu path: /Add/Standardize selected variables

store

Arguments: filename [varlist]

Options: --omit-obs (see below, on CSV format)

--no-header (see below, on CSV format)

--gnu-octave (use GNU Octave format)

--gnu-R (format friendly for read.table)

--gzipped[=level] (apply gzip compression)

--jmulti (use JMulti ASCII format)

--dat (use PcGive ASCII format)

--decimal-comma (use comma as decimal character)

--database (use gretl database format)

--overwrite (see below, on database format)

--comment=string (see below)

--matrix=matrix-name (see below)

Save data to filename. By default all currently defined series are saved but the optional varlist argu-
ment can be used to select a subset of series. If the dataset is sub-sampled, only the observations
in the current sample range are saved.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

Note that the store command behaves in a special manner in the context of a “progressive loop”;
see chapter 13 of the Gretl User’s Guide for details.

Native formats

If filename has extension .gdt or .gtdb this implies saving the data in one of gretl’s native formats.
In addition, if no extension is given .gdt is taken to be implicit and the suffix is added automat-
ically. The gdt format is XML, optionally gzip-compressed, while the gdtb format is binary. The
former is recommended for datasets of moderate size (say, up to several hundred kilobytes of
data); the binary format is much faster for very large datasets.

When data are saved in gdt format the --gzipped option may be used for data compression.
The optional parameter for this flag controls the level of compression (from 0 to 9): higher levels
produce a smaller file, but compression takes longer. The default level is 1; a level of 0 means that
no compression is applied.

Chapter 1. Gretl commands 100

A special sort of “native” save is supported in the GUI program: if filename has extension .gretl
and the varlist argument is omitted, then a gretl session file is written. Such files include the
current dataset along with any named objects such as models, graphs and matrices.

Other formats

The format in which the data are written may be controlled to a degree by the extension or suffix
of filename, as follows:

• .csv: comma-separated values (CSV).

• .txt or .asc: space-separated values.

• .m: GNU Octave matrix format.

• .dta: Stata dta format (version 113).

The format-related option flags shown above can be used to force the choice of format indepen-
dently of the filename (or to get gretl to write in the formats of PcGive or JMulTi).

CSV options

The option flags --omit-obs and --no-header are specific to saving data in CSV format. By
default, if the data are time series or panel, or if the dataset includes specific observation markers,
the output file includes a first column identifying the observations (e.g. by date). If the --omit-obs
flag is given this column is omitted. The --no-header flag suppresses the usual printing of the
names of the variables at the top of the columns.

The option flag --decimal-comma is also confined to CSV. Its effect is to replace the decimal point
with decimal comma; in addition the column separator is forced to be a semicolon rather than a
comma.

Storing to a database

The option of saving in gretl database format is intended for construction of large sets of series
with mixed frequencies and ranges of observations. At present this option is available only for
annual, quarterly or monthly time-series data, or undated (cross-sectional) data. A gretl database
takes the form of two files: one with suffix .bin to hold the data in binary form and a plain text
file with suffix .idx for the metadata. In naming the output file on the command line you should
either give the .bin suffix or no suffix.

When saving to a database that already exists, the default action is to append series to the prior
content. In this context it is an error if any series to be saved has the same name as one already
present. The --overwrite flag has the effect that, if there are variable names in common, the
newly saved data replace the prior values.

The --comment option is available when saving data as a database or as CSV. The required param-
eter is a double-quoted one-line string, attached to the option flag with an equals sign. The string
is inserted as a comment into the database index file or at the top of the CSV output.

Writing a matrix as a dataset

The --matrix option requires a parameter, the name of a (non-empty) matrix. The effect of store
is then, in effect, to turn the matrix into a dataset “in the background” and write it to file as such.
Matrix columns become series; their names are taken from column-names attached to the matrix,
if any, or by default are assigned as v1, v2 and so on. If the matrix has row names attached these
are used as “observation markers” in the dataset.

Chapter 1. Gretl commands 101

Note that matrices can be written to file in their own right, see the mwrite function. But in some
cases it may be useful to write them in dataset mode.

Menu path: /File/Save data; /File/Export data

summary

Variants: summary [varlist]

summary --matrix=matname

Options: --simple (basic statistics only)

--weight=wtvar (weighting variable)

--by=byvar (see below)

Example: frontier.inp

In its first form, this command prints summary statistics for the variables in varlist, or for all the
variables in the data set if varlist is omitted. By default, output consists of the mean, median, mini-
mum, maximum, standard deviation (sd), coefficient of variation (= sd/mean), skewness coefficient,
excess kurtosis, 5th and 95th percentiles, inter-quartile range and number of missing observations.
But if the --simple option is given, output is restricted to the mean, median, standard deviation,
minimum and maximum.

If the --weight option is given, in which case the parameter wtvar should be the name of a series
supplying weights per observation, the statistics are weighted accordingly.

If the --by option is given, in which case the parameter byvar should be the name of a discrete
variable, then statistics are printed for sub-samples corresponding to the distinct values taken on
by byvar. For example, if byvar is a (binary) dummy variable, statistics are given for the cases
byvar=0 and byvar=1. Note: at present, this option is incompatible with the --weight option.

If the alternative form is given, using a named matrix, then summary statistics are printed for each
column of the matrix. The --by option is not available in this case.

The table of statistics produced by summary can be retrieved in matrix form via the $result accessor.
When the --by option is given, this accessor is produced only if varlist contains a single series.

See also the aggregate function for a more flexible means of producing “factorized” statistics.

Menu path: /View/Summary statistics

Other access: Main window pop-up menu

system

Variants: system method=estimator

sysname <- system

Examples: "Klein Model 1" <- system

system method=sur

system method=3sls

See also klein.inp, kmenta.inp, greene14_2.inp

Starts a system of equations. Either of two forms of the command may be given, depending on
whether you wish to save the system for estimation in more than one way or just estimate the
system once.

To save the system you should assign it a name, as in the first example (if the name contains spaces
it must be surrounded by double quotes). In this case you estimate the system using the estimate
command. With a saved system of equations, you are able to impose restrictions (including cross-
equation restrictions) using the restrict command.

Chapter 1. Gretl commands 102

Alternatively you can specify an estimator for the system using method= followed by a string iden-
tifying one of the supported estimators: ols (Ordinary Least Squares), tsls (Two-Stage Least
Squares) sur (Seemingly Unrelated Regressions), 3sls (Three-Stage Least Squares), fiml (Full In-
formation Maximum Likelihood) or liml (Limited Information Maximum Likelihood). In this case
the system is estimated once its definition is complete.

An equation system is terminated by the line end system. Within the system four sorts of state-
ment may be given, as follows.

• equation: specify an equation within the system.

• instr: for a system to be estimated via Three-Stage Least Squares, a list of instruments (by
variable name or number). Alternatively, you can put this information into the equation line
using the same syntax as in the tsls command.

• endog: for a system of simultaneous equations, a list of endogenous variables. This is primar-
ily intended for use with FIML estimation, but with Three-Stage Least Squares this approach
may be used instead of giving an instr list; then all the variables not identified as endogenous
will be used as instruments.

• identity: for use with FIML, an identity linking two or more of the variables in the system.
This sort of statement is ignored when an estimator other than FIML is used.

After estimation using the system or estimate commands the following accessors can be used to
retrieve additional information:

• $uhat: the matrix of residuals, one column per equation.

• $yhat: matrix of fitted values, one column per equation.

• $coeff: column vector of coefficients (all the coefficients from the first equation, followed by
those from the second equation, and so on).

• $vcv: covariance matrix of the coefficients. If there are k elements in the $coeff vector, this
matrix is k by k.

• $sigma: cross-equation residual covariance matrix.

• $sysGamma, $sysA and $sysB: structural-form coefficient matrices (see below).

If you want to retrieve the residuals or fitted values for a specific equation as a data series, select a
column from the $uhat or $yhat matrix and assign it to a series, as in

series uh1 = $uhat[,1]

The structural-form matrices correspond to the following representation of a simultaneous equa-
tions model: Γyt = Ayt−1 + Bxt + ϵt
If there are n endogenous variables and k exogenous variables, Γ is an n×n matrix and B is n× k.
If the system contains no lags of the endogenous variables then the A matrix is not present. If the
maximum lag of an endogenous regressor is p, the A matrix is n×np.

Menu path: /Model/Simultaneous equations

Chapter 1. Gretl commands 103

tabprint

Options: --output=filename (send output to specified file)

--format="f1|f2|f3|f4" (Specify custom TeX format)

--complete (TeX-related, see below)

Must follow the estimation of a model. Prints the model in tabular form. The format is governed
by the extension of the specified filename: “.tex” for LATEX, “.rtf” for RTF (Microsoft’s Rich Text
Format), or “.csv” for comma-separated. The file will be written in the currently set workdir, unless
filename contains a full path specification.

If CSV format is selected, values are comma-separated unless the decimal comma is in force, in
which case the separator is the semicolon.

Options specific to LATEX output

If the --complete flag is given the LATEX file is a complete document, ready for processing; otherwise
it must be included in a document.

If you wish alter the appearance of the tabular output, you can specify a custom row format using
the --format flag. The format string must be enclosed in double quotes and must be tied to the
flag with an equals sign. The pattern for the format string is as follows. There are four fields,
representing the coefficient, standard error, t-ratio and p-value respectively. These fields should be
separated by vertical bars; they may contain a printf-type specification for the formatting of the
numeric value in question, or may be left blank to suppress the printing of that column (subject to
the constraint that you can’t leave all the columns blank). Here are a few examples:

--format="%.4f|%.4f|%.4f|%.4f"
--format="%.4f|%.4f|%.3f|"
--format="%.5f|%.4f||%.4f"
--format="%.8g|%.8g||%.4f"

The first of these specifications prints the values in all columns using 4 decimal places. The second
suppresses the p-value and prints the t-ratio to 3 places. The third omits the t-ratio. The last one
again omits the t, and prints both coefficient and standard error to 8 significant figures.

Once you set a custom format in this way, it is remembered and used for the duration of the gretl
session. To revert to the default format you can use the special variant --format=default.

Menu path: Model window, /LaTeX

textplot

Argument: varlist

Options: --time-series (plot by observation)

--one-scale (force a single scale)

--tall (use 40 rows)

Quick and simple ASCII graphics. Without the --time-series flag, varlist must contain at least
two series, the last of which is taken as the variable for the x axis, and a scatter plot is produced.
In this case the --tall option may be used to produce a graph in which the y axis is represented
by 40 rows of characters (the default is 20 rows).

With the --time-series, a plot by observation is produced. In this case the option --one-scale
may be used to force the use of a single scale; otherwise if varlist contains more than one series the
data may be scaled. Each line represents an observation, with the data values plotted horizontally.

See also gnuplot.

Chapter 1. Gretl commands 104

tobit

Arguments: depvar indepvars

Options: --llimit=lval (specify left bound)

--rlimit=rval (specify right bound)

--vcv (print covariance matrix)

--robust (robust standard errors)

--opg (see below)

--cluster=clustvar (see logit for explanation)

--verbose (print details of iterations)

--quiet (don’t print results)

Estimates a Tobit model, which may be appropriate when the dependent variable is “censored”.
For example, positive and zero values of purchases of durable goods on the part of individual
households are observed, and no negative values, yet decisions on such purchases may be thought
of as outcomes of an underlying, unobserved disposition to purchase that may be negative in some
cases.

By default it is assumed that the dependent variable is censored at zero on the left and is uncen-
sored on the right. However you can use the options --llimit and --rlimit to specify a different
pattern of censoring. Note that if you specify a right bound only, the assumption is then that the
dependent variable is uncensored on the left.

The Tobit model is a special case of interval regression. Please see the intreg command for further
details, including an account of the --robust and --opg options.

Menu path: /Model/Limited dependent variable/Tobit

tsls

Arguments: depvar indepvars ; instruments

Options: --no-tests (don’t do diagnostic tests)

--vcv (print covariance matrix)

--quiet (don’t print results)

--no-df-corr (no degrees-of-freedom correction)

--robust (robust standard errors)

--cluster=clustvar (clustered standard errors)

--matrix-diff (compute Hausman test via matrix difference)

--liml (use Limited Information Maximum Likelihood)

--gmm (use the Generalized Method of Moments)

Example: tsls y1 0 y2 y3 x1 x2 ; 0 x1 x2 x3 x4 x5 x6

penngrow.inp

Computes Instrumental Variables (IV) estimates, by default using two-stage least squares (TSLS) but
see below for further options. The dependent variable is depvar, indepvars is the list of regressors
(which is presumed to include at least one endogenous variable); and instruments is the list of
instruments (exogenous and/or predetermined variables). If the instruments list is not at least as
long as indepvars, the model is not identified.

In the above example, the ys are endogenous and the xs are the exogenous variables. Note that
exogenous regressors should appear in both lists.

For details on the effects of the --robust and --cluster options, please see the help for ols.

Chapter 1. Gretl commands 105

TSLS-specific tests

Output for two-stage least squares estimates includes the Hausman test and, if the model is overi-
dentified, the Sargan overidentification test. For a good explanation of both tests see chapter 8 of
Davidson and MacKinnon (2004).

In the Hausman test, the null hypothesis is that OLS estimates are consistent, or in other words
estimation by means of instrumental variables is not really required. By default this test is im-
plemented by the regression method, but if the --matrix-diff option is given the method of
Papadopoulos (2023) is used. In both cases a robust variant is employed if the --robust option is
also given.

A model of this sort is overidentified if there are more instruments than are strictly required. The
Sargan overidentification test (Sargan, 1958) is based on an auxiliary regression of the residuals
from the two-stage least squares model on the full list of instruments. The null hypothesis is that
all the instruments are valid, and suspicion is thrown on this hypothesis if the auxiliary regression
has a significant degree of explanatory power.

These statistics are available, upon successful completion of the command, under the names $haus-
man and $sargan (if applicable), respectively.

Weak instruments

For both TSLS and LIML estimation, an additional test result is shown provided that the model
is estimated under the assumption of i.i.d. errors (that is, the --robust option is not selected).
This is a test for weakness of the instruments. Weak instruments can lead to serious problems in
IV regression: biased estimates and/or incorrect size of hypothesis tests based on the covariance
matrix, with rejection rates well in excess of the nominal significance level (Stock et al., 2002). The
test statistic is the first-stage F -test if the model contains just one endogenous regressor, otherwise
it is the smallest eigenvalue of the matrix counterpart of the first stage F . Critical values based on
the Monte Carlo analysis of Stock and Yogo (2003) are shown when available.

R-squared

The R-squared value printed for models estimated via two-stage least squares is the square of the
correlation between the dependent variable and the fitted values.

Alternative estimators

As alternatives to TSLS, the model may be estimated via Limited Information Maximum Likelihood
(the --liml option) or via the Generalized Method of Moments (--gmm option). Note that if the
model is just identified these methods should produce the same results as TSLS, but if it is overi-
dentified the results will differ in general.

If GMM estimation is selected, the following additional options become available:

• --two-step: perform two-step GMM rather than the default of one-step.

• --iterate: Iterate GMM to convergence.

• --weights=Wmat: specify a square matrix of weights to be used when computing the GMM
criterion function. The dimension of this matrix must equal the number of instruments. The
default is an appropriately sized identity matrix.

Menu path: /Model/Instrumental variables

Chapter 1. Gretl commands 106

tsplots

Argument: varlist

Options: --matrix=name (plot columns of named matrix)

--output=filename (send output to specified file)

Examples: tsplots 1 2 3 4

tsplots 1 2 3 4 --matrix=X

Provides an easy way of plotting multiple time series (up to a maximum of 16) on a single canvas.
The varlist argument can be given as a list of ID numbers or names of series, or as column numbers
in the case of matrix input.

See also scatters for means of producing multiple scatterplots, and gridplot for a more flexible way
of combining plots in a grid.

Menu path: /View/Multiple graphs/Time series

var

Arguments: order ylist [; xlist]

Options: --nc (do not include a constant)

--trend (include a linear trend)

--seasonals (include seasonal dummy variables)

--robust (robust standard errors)

--robust-hac (HAC standard errors)

--quiet (skip output of individual equations)

--silent (don’t print anything)

--impulse-responses (print impulse responses)

--variance-decomp (print variance decompositions)

--lagselect (show criteria for lag selection)

--minlag=minimum lag (lag selection only, see below)

Examples: var 4 x1 x2 x3 ; time mydum

var 4 x1 x2 x3 --seasonals

var 12 x1 x2 x3 --lagselect

See also sw_ch14.inp

Sets up and estimates (using OLS) a vector autoregression (VAR). The first argument specifies the
lag order — or the maximum lag order in case the --lagselect option is given (see below). The
order may be given numerically, or as the name of a pre-existing scalar variable. Then follows
the setup for the first equation. Do not include lags among the elements of ylist — they will be
added automatically. The semi-colon separates the stochastic variables, for which order lags will
be included, from any exogenous variables in xlist. Note that a constant is included automatically
unless you give the --nc flag, a trend can be added with the --trend flag, and seasonal dummy
variables may be added using the --seasonals flag.

While a VAR specification usually includes all lags from 1 to a given maximum, it is possible to
select a specific set of lags. To do this, substitute for the regular (scalar) order argument either the
name of a predefined vector or a comma-separated list of lags, enclosed in braces. We show below
two ways of specifying that a VAR should include lags 1, 2 and 4 (but not lag 3):

var {1,2,4} ylist
matrix p = {1,2,4}
var p ylist

A separate regression is reported for each variable in ylist. Output for each equation includes F -

Chapter 1. Gretl commands 107

tests for zero restrictions on all lags of each of the variables, an F -test for the significance of the
maximum lag, and, if the --impulse-responses flag is given, forecast variance decompositions
and impulse responses.

Forecast variance decompositions and impulse responses are based on the Cholesky decomposition
of the contemporaneous covariance matrix, and in this context the order in which the (stochastic)
variables are given matters. The first variable in the list is assumed to be “most exogenous” within-
period. The horizon for variance decompositions and impulse responses can be set using the
set command. For retrieval of a specified impulse response function in matrix form, see the irf
function.

If the --robust option is given, standard errors are corrected for heteroskedasticity. Alternatively,
the --robust-hac option can be given to produce standard errors that are robust with respect to
both heteroskedasticity and autocorrelation (HAC). In general the latter correction should not be
needed if the VAR includes sufficient lags.

Lag selection

If the --lagselect option is given, the usual VAR output is not presented. Instead the first argu-
ment is taken as the maximum lag order and the output consists of a table showing comparative
figures computed for VARs of order 1 (by default) up to the specified maximum. The table includes
log-likelihood and the P -value for a Likelihood Ratio (LR) test, followed by the Akaike (AIC), Schwarz
(BIC) and Hannan–Quinn (HQC) information criteria. The LR test compares the specification on row
i with that on row i − 1, the null hypothesis being that all the parameters added on row i have zero
values. The table of results may be retrieved in matrix form via the $test accessor.

In the lag-selection context (only) the --minlag option can be used to adjust the minimum lag
order. Set this to 0 to allow for the possibility that the optimal lag order is zero (meaning that a
VAR is not really called for at all). Conversely you could set --minlag=4 if you believe you need at
least 4 lags, thereby saving a little compute time.

Menu path: /Model/Multivariate time series

varlist

Option: --type=typename (scope of listing)

By default, prints a listing of the series in the current dataset (if any); ls may be used as an alias.

If the --type option is given, it should be followed (after an equals sign) by one of the following
typenames: series, scalar, matrix, list, string, bundle, array or accessor. The effect is to
print the names of all currently defined objects of the named type.

As a special case, if the typename is accessor, the names printed are those of the internal variables
currently available as “accessors”, such as $nobs and $uhat, regardless of their specific type.

vartest

Arguments: series1 series2

Calculates the F statistic for the null hypothesis that the population variances for the variables
series1 and series2 are equal, and shows its p-value. The test statistics and the p-value can be
retrieved through the accessors $test and $pvalue, respectively. The following code

open AWM18.gdt
vartest EEN EXR
eval $test
eval $pvalue

computes the test and shows how to retrieve the test statistics and corresponding p-value after-
wards:

Chapter 1. Gretl commands 108

Equality of variances test

EEN: Number of observations = 192
EXR: Number of observations = 188
Ratio of sample variances = 3.70707
Null hypothesis: The two population variances are equal
Test statistic: F(191,187) = 3.70707
p-value (two-tailed) = 1.94866e-18

3.7070716
1.9486605e-18

Menu path: /Tools/Test statistic calculator

vecm

Arguments: order rank ylist [; xlist] [; rxlist]

Options: --nc (no constant)

--rc (restricted constant)

--uc (unrestricted constant)

--crt (constant and restricted trend)

--ct (constant and unrestricted trend)

--seasonals (include centered seasonal dummies)

--quiet (skip output of individual equations)

--silent (don’t print anything)

--impulse-responses (print impulse responses)

--variance-decomp (print variance decompositions)

Examples: vecm 4 1 Y1 Y2 Y3

vecm 3 2 Y1 Y2 Y3 --rc

vecm 3 2 Y1 Y2 Y3 ; X1 --rc

See also denmark.inp, hamilton.inp

A VECM is a form of vector autoregression or VAR (see var), applicable where the variables in the
model are individually integrated of order 1 (that is, are random walks, with or without drift), but
exhibit cointegration. This command is closely related to the Johansen test for cointegration (see
johansen).

The order parameter to this command represents the lag order of the VAR system. The number of
lags in the VECM itself (where the dependent variable is given as a first difference) is one less than
order.

The rank parameter represents the cointegration rank, or in other words the number of cointe-
grating vectors. This must be greater than zero and less than or equal to (generally, less than) the
number of endogenous variables given in ylist.

ylist supplies the list of endogenous variables, in levels. The inclusion of deterministic terms in
the model is controlled by the option flags. The default if no option is specified is to include an
“unrestricted constant”, which allows for the presence of a non-zero intercept in the cointegrating
relations as well as a trend in the levels of the endogenous variables. In the literature stemming
from the work of Johansen (see for example his 1995 book) this is often referred to as “case 3”.
The first four options given above, which are mutually exclusive, produce cases 1, 2, 4 and 5
respectively. The meaning of these cases and the criteria for selecting a case are explained in
chapter 33 of the Gretl User’s Guide.

The optional lists xlist and rxlist allow you to specify sets of exogenous variables which enter the

Chapter 1. Gretl commands 109

model either unrestrictedly (xlist) or restricted to the cointegration space (rxlist). These lists are
separated from ylist and from each other by semicolons.

The --seasonals option, which may be combined with any of the other options, specifies the
inclusion of a set of centered seasonal dummy variables. This option is available only for quarterly
or monthly data.

The first example above specifies a VECM with lag order 4 and a single cointegrating vector. The
endogenous variables are Y1, Y2 and Y3. The second example uses the same variables but specifies
a lag order of 3 and two cointegrating vectors; it also specifies a “restricted constant”, which is
appropriate if the cointegrating vectors may have a non-zero intercept but the Y variables have no
trend.

Following estimation of a VECM some special accessors are available: $jalpha, $jbeta and $jvbeta
retrieve, respectively, the α and β matrices and the estimated variance of β. For retrieval of a spec-
ified impulse response function in matrix form, see the irf function.

Menu path: /Model/Multivariate time series

vif

Option: --quiet (don’t print anything)

Example: longley.inp

Must follow the estimation of a model which includes at least two independent variables. Calculates
and displays diagnostic information pertaining to collinearity.

The Variance Inflation Factor or VIF for regressor j is defined as

1

1− R2
j

where Rj is the coefficient of multiple correlation between regressor j and the other regressors. The
factor has a minimum value of 1.0 when the variable in question is orthogonal to the other indepen-
dent variables. Neter et al. (1990) suggest inspecting the largest VIF as a diagnostic for collinearity;
a value greater than 10 is sometimes taken as indicating a problematic degree of collinearity.

Following this command the $result accessor may be used to retrieve a column vector holding the
VIFs. For a more sophisticated approach to diagnosing collinearity, see the bkw command.

Menu path: Model window, /Analysis/Collinearity

wls

Arguments: wtvar depvar indepvars

Options: --vcv (print covariance matrix)

--robust (robust standard errors)

--quiet (suppress printing of results)

--allow-zeros (see below)

Computes weighted least squares (WLS) estimates using wtvar as the weight, depvar as the de-
pendent variable, and indepvars as the list of independent variables. Let w denote the positive
square root of wtvar; then WLS is basically equivalent to an OLS regression of w * depvar on w *
indepvars. The R-squared, however, is calculated in a special manner, namely as

R2 = 1− ESS
WTSS

where ESS is the error sum of squares (sum of squared residuals) from the weighted regression
and WTSS denotes the “weighted total sum of squares”, which equals the sum of squared residuals
from a regression of the weighted dependent variable on the weighted constant alone.

Chapter 1. Gretl commands 110

As a special case, if wtvar is a 0/1 dummy variable, WLS estimation is equivalent to OLS on a
sample that excludes all observations with value zero for wtvar. Otherwise including weights of
zero is considered an error, but if you really want to mix zero weights with positive ones you can
append the --allow-zeros option.

For weighted least squares estimation applied to panel data and based on the unit specific error
variances please see the panel command with the --unit-weights option.

Menu path: /Model/Other linear models/Weighted Least Squares

xcorrgm

Arguments: series1 series2 [order]

Options: --plot=mode-or-filename (see below)

--silent (suppress printed output)

Example: xcorrgm x y 12

Prints and/or graphs the cross-correlogram for series1 and series2, which may be specified by name
or number. The values are the sample correlation coefficients between the current value of series1
and successive leads and lags of series2.

If an order value is specified the length of the cross-correlogram is limited to at most that number
of leads and lags, otherwise the length is determined automatically, as a function of the frequency
of the data and the number of observations.

By default, when gretl is not in batch mode a plot of the cross-correlogram is shown. This can be
adjusted via the --plot option. The acceptable parameters to this option are none (to suppress the
plot); display (to produce a gnuplot graph even when in batch mode); or a file name. The effect of
providing a file name is as described for the --output option of the gnuplot command.

Menu path: /View/Cross-correlogram

Other access: Main window pop-up menu (multiple selection)

xtab

Arguments: ylist [; xlist]

Options: --row (display row percentages)

--column (display column percentages)

--zeros (display zero entries)

--no-totals (suppress printing of marginal counts)

--matrix=matname (use frequencies from named matrix)

--quiet (suppress printed output)

--tex[=filename] (output as LATEX)

--equal (see the LATEX case below)

Examples: xtab 1 2

xtab 1 ; 2 3 4

xtab --matrix=A

xtab 1 2 --tex="xtab.tex"

See also ooballot.inp

Given just the ylist argument, computes (and by default prints) a contingency table or cross-
tabulation for each combination of the variables included in the list. If a second list xlist is given,
each variable in ylist is cross-tabulated by row against each variable in xlist (by column). Variables
in these lists can be referenced by name or by number. Note that all the variables must have been
marked as discrete. Alternatively, if the --matrix option is given, the named matrix is treated as a

Chapter 1. Gretl commands 111

precomputed set of frequencies, to be displayed as a cross-tabulation (see also the mxtab function).
In this case the list argument(s) should be omitted.

By default the cell entries are given as frequency counts. The --row and --column options (which
are mutually exclusive) replace the counts with the percentages for each row or column, respec-
tively. By default, cells with a zero count are left blank but the --zeros option has the effect of
showing zero counts explicitly, which may be useful for importing the table into another program,
such as a spreadsheet.

Pearson’s chi-square test for independence is shown if the expected frequency under independence
is at least 1.0e-7 for all cells. A common rule of thumb for the validity of this statistic is that at
least 80 percent of cells should have expected frequencies of 5 or greater; if this criterion is not
met a warning is printed.

If the contingency table is 2 by 2, Fisher’s Exact Test for independence is shown. Note that this
test is based on the assumption that the row and column totals are fixed, which may or may not
be appropriate depending on how the data were generated. The left p-value should be used when
the alternative to independence is negative association (values tend to cluster in the lower left and
upper right cells), the right p-value when the alternative is positive association. The two-tailed
p-value for this test is calculated by method (b) in section 2.1 of Agresti (1992): it is the sum of
the probabilities of all possible tables with the given row and column totals and a probability no
greater than that of the observed table.

The bivariate case

In the case of a bivariate cross-tabulation (only one list is given, and it has two members) certain
results are stored. The contingency table may be retrieved in matrix form via the $result accessor.
In addition, if the minimum expected value condition is met, the Pearson chi-square test and its p-
value may be retrieved via the $test and $pvalue accessors. If it’s these results that are of interest,
the --quiet option can be used to suppress the usual printout.

LATEX output

If the --tex option is given the cross-tabulation is printed in the form of a LATEX tabular envi-
ronment, either inline (from where it may be copied and pasted) or, if the filename parameter is
appended, to the specified file. (If filename does not specify a full path the file is written in the
currently set workdir.) No test statistic is computed. The additional option --equal can be used
to flag, by printing in boldface, the count or percentage for cells in which the row and column
variables have the same numerical value. This option is ignored unless the --tex option is given,
and also when one or both of the cross-tabulated variables are string-valued.

1.3 Commands by topic

The following sections show the available commands grouped by topic.

Estimation

ar Autoregressive estimation ar1 AR(1) estimation

arch ARCH model arima ARIMA model

arma ARMA model biprobit Bivariate probit

dpanel Dynamic panel models duration Duration models

equation Define equation within a system estimate Estimate system of equations

garch GARCH model gmm GMM estimation

heckit Heckman selection model hsk Heteroskedasticity-corrected esti-
mates

Chapter 1. Gretl commands 112

intreg Interval regression model lad Least Absolute Deviation estima-
tion

logistic Logistic regression logit Logit regression

midasreg MIDAS regression mle Maximum likelihood estimation

mpols Multiple-precision OLS negbin Negative Binomial regression

nls Nonlinear Least Squares ols Ordinary Least Squares

panel Panel models poisson Poisson estimation

probit Probit model quantreg Quantile regression

system Systems of equations tobit Tobit model

tsls Instrumental variables regression var Vector Autoregression

vecm Vector Error Correction Model wls Weighted Least Squares

Tests

add Add variables to model adf Augmented Dickey-Fuller test

bds BDS nonlinearity test bkw Collinearity Diagnostics

chow Chow test coeffsum Sum of coefficients

coint Engle-Granger cointegration test cusum CUSUM test

difftest Nonparametric tests for differ-
ences

johansen Johansen cointegration test

kpss KPSS stationarity test leverage Influential observations

levinlin Levin-Lin-Chu test meantest Difference of means

modtest Model tests normtest Normality test

omit Omit variables panspec Panel specification

qlrtest Quandt likelihood ratio test reset Ramsey’s RESET

restrict Testing restrictions runs Runs test

vartest Difference of variances vif Variance Inflation Factors

Transformations

diff First differences discrete Mark variables as discrete

dummify Create sets of dummies lags Create lags

ldiff Log-differences logs Create logs

orthdev Orthogonal deviations sdiff Seasonal differencing

square Create squares of variables stdize Standardize series

Statistics

anova ANOVA corr Correlation coefficients

corrgm Correlogram fractint Fractional integration

freq Frequency distribution hurst Hurst exponent

mahal Mahalanobis distances pca Principal Components Analysis

pergm Periodogram pvalue Compute p-values

spearman Spearmans’s rank correlation summary Descriptive statistics

xcorrgm Cross-correlogram xtab Cross-tabulate variables

Dataset

append Append data data Import from database

Chapter 1. Gretl commands 113

dataset Manipulate the dataset delete Delete variables

genr Generate a new variable info Information on data set

join Manage data sources labels Labels for variables

markers Observation markers nulldata Creating a blank dataset

open Open a data file rename Rename variables

setinfo Edit attributes of variable setmiss Missing value code

setobs Set frequency and starting obser-
vation

smpl Set the sample range

store Save data varlist Listing of variables

Graphs

boxplot Boxplots gnuplot Create a gnuplot graph

graphpg Gretl graph page gridplot

gpbuild hfplot Create a MIDAS plot

kdplot Kernel density plot panplot plot a panel series

plot qqplot Q-Q plot

rmplot Range-mean plot scatters Multiple pairwise graphs

textplot ASCII plot tsplots Multiple time-series plots

Printing

eqnprint Print model as equation modprint Print a user-defined model

outfile Direct printing to file print Print data or strings

printf Formatted printing tabprint Print model in tabular form

Prediction

fcast Generate forecasts

Programming

break Break from loop catch Catch errors

clear continue Skip forward in loop

elif Flow control else Flow control

end End block of commands endif Flow control

endloop End a command loop flush

foreign Non-native script funcerr Exit on error

function Define a function if Flow control

include Include function definitions loop Start a command loop

makepkg Make function package mpi Message Passing Interface

run Execute a script set Set program parameters

setopt Set options for next command

Utilities

eval help Help on commands

modeltab The model table pkg

quit Exit the program shell Execute shell commands

Chapter 1. Gretl commands 114

1.4 Short-form command options

As can be seen from section 1.2, the behavior of many gretl commands can be modified via the
use of option flags. These take the form of two dashes followed by a string which is somewhat
descriptive of the effect of the option.

Some options require a parameter, which must be joined to the option “flag” with an equals sign.
Among the options that do not require a parameter, certain common ones have a short form—a
single dash followed by a single letter—and it is considered idiomatic to use the short forms in
hansl scripts. The table below shows the relevant mapping: for any command which supports the
long-form option in the first column, the short form in the second column is also supported.

long form short form

--verbose -v

--quiet -q

--robust -r

--hessian -h

--window -w

Chapter 2

Gretl functions

2.1 Introduction

This chapter presents two listings:

• “Accessors”, whose names start with $ and which serve to retrieve the values of internal
variables or constants. These do not take any arguments.

• Functions proper. In almost all cases these require at least one argument, and even if no
argument is required an empty “argument slot” () is mandatory.

2.2 Accessors

$ahat

Output: series

Must follow the estimation of a fixed-effects or random-effects panel data model. Returns a series
containing the estimates of the individual effects.

$aic

Output: scalar

Returns the Akaike Information Criterion for the last estimated model, if available. See chapter 28
of the Gretl User’s Guide for details of the calculation.

$allprobs

Output: matrix

Must follow estimation via ordered probit or logit, or multinomial logit. Returns an n × j matrix,
where n is the number of observations used and j is the number of possible outcomes, holding the
estimated probability of each outcome at each observation.

$bic

Output: scalar

Returns Schwarz’s Bayesian Information Criterion for the last estimated model, if available. See
chapter 28 of the Gretl User’s Guide for details of the calculation.

$chisq

Output: scalar

Returns the overall chi-square statistic from the last estimated model, if available.

115

Chapter 2. Gretl functions 116

$coeff

Output: matrix or scalar

Argument: s (name of coefficient, optional)

With no arguments, $coeff returns a column vector containing the estimated coefficients for the
last model. With the optional string argument it returns a scalar, namely the estimated parameter
named s. See also $stderr, $vcv.

Example:

open bjg
arima 0 1 1 ; 0 1 1 ; lg
b = $coeff # gets a vector
macoef = $coeff(theta_1) # gets a scalar

If the “model” in question is actually a system, the result depends on the characteristics of the sys-
tem: for VARs and VECMs the value returned is a matrix with one column per equation, otherwise
it is a column vector containing the coefficients from the first equation followed by those from the
second equation, and so on.

$command

Output: string

Must follow the estimation of a model; returns the command word, for example ols or probit.

$compan

Output: matrix

Must follow the estimation of a VAR or a VECM; returns the companion matrix.

$datatype

Output: scalar

Returns an integer value representing the sort of dataset that is currently loaded: 0 = no data; 1 =
cross-sectional (undated) data; 2 = time-series data; 3 = panel data.

$depvar

Output: string

Must follow the estimation of a single-equation model; returns the name of the dependent variable.

$df

Output: scalar

Returns the degrees of freedom of the last estimated model. If the last model was in fact a system
of equations, the value returned is the degrees of freedom per equation; if this differs across the
equations then the value given is the number of observations minus the mean number of coeffi-
cients per equation (rounded up to the nearest integer).

Chapter 2. Gretl functions 117

$diagpval

Output: scalar

Must follow estimation of a system of equations. Returns the P -value associated with the $diagtest
statistic.

$diagtest

Output: scalar

Must follow estimation of a system of equations. Returns the test statistic for the null hypothesis
that the cross-equation covariance matrix is diagonal. This is the Breusch–Pagan test except when
the estimator is (unrestricted) iterated SUR, in which case it is a Likelihood Ratio test. See chapter
34 of the Gretl User’s Guide for details; see also $diagpval.

$dotdir

Output: string

This accessor returns the path where gretl stores temporary files, for example when using the
mwrite function with a non-zero third argument.

$dw

Output: scalar

Returns the Durbin–Watson statistic for first-order serial correlation from the model last estimated
(if available).

$dwpval

Output: scalar

Returns the CDF of the Durbin–Watson distribution evaluated at the DW statistic for the model
last estimated (if available), computed using the Imhof (1961) procedure. This is the p-value for
a one-sided test with an alternative of positive first-order autocorrelation. If you want the p-value
for a two-sided test, take 2P if DW < 2 or 2(1 − P) if DW > 2, where P is the value returned by the
accessor.

Due to the limited precision of digital arithmetic, the Imhof integral can go negative when the
Durbin–Watson statistic is close to its lower bound. In that case the accessor returns NA. Since any
other failure mode results in an error being flagged it is probably safe to assume that an NA value
means the true p-value is “very small”, although we are unable to quantify it.

$ec

Output: matrix

Must follow the estimation of a VECM; returns a matrix containing the error correction terms. The
number of rows equals the number of observations used and the number of columns equals the
cointegration rank of the system.

$error

Output: scalar

Returns the program’s internal error code, which will be non-zero in case an error has occurred
but has been trapped using catch. Note that using this accessor causes the internal error code to

Chapter 2. Gretl functions 118

be reset to zero. If you want to get the error message associated with a given $error you need to
store the value in a temporary variable, as in

err = $error
if (err)

printf "Got error %d (%s)\n", err, errmsg(err)
endif

See also catch, errmsg.

$ess

Output: scalar

Returns the error sum of squares of the last estimated model, if available.

$evals

Output: matrix

Must follow the estimation of a VECM; returns a vector containing the eigenvalues that are used in
computing the trace test for cointegration.

$fcast

Output: matrix

Must follow the fcast forecasting command; returns the forecast values as a matrix. If the model
on which the forecast was based is a system of equations the returned matrix will have one column
per equation, otherwise it is a column vector.

$fcse

Output: matrix

Must follow the fcast forecasting command; returns the standard errors of the forecasts, if avail-
able, as a matrix. If the model on which the forecast was based is a system of equations the returned
matrix will have one column per equation, otherwise it is a column vector.

$fevd

Output: matrix

Must follow estimation of a VAR. Returns a matrix containing the forecast error variance decompo-
sition (FEVD). This matrix has h rows where h is the forecast horizon, which can be chosen using
set horizon or otherwise is set automatically based on the frequency of the data.

For a VAR with p variables, the matrix has p2 columns: the first p columns contain the FEVD for
the first variable in the VAR; the second p columns the FEVD for the second variable; and so on.
The (decimal) fraction of the forecast error for variable i attributable to innovation in variable j is
therefore found in column (i − 1)p + j.

For a more flexible variant of this functionality, see the fevd function.

$Fstat

Output: scalar

Returns the overall F-statistic from the last estimated model, if available.

Chapter 2. Gretl functions 119

$gmmcrit

Output: scalar

Must follow a gmm block. Returns the value of the GMM objective function at its minimum.

$h

Output: series

Must follow a garch command. Returns the estimated conditional variance series.

$hausman

Output: row vector

Must follow estimation of a model via either tsls or panel with the random effects option. Returns
a 1 × 3 vector containing the value of the Hausman test statistic, the corresponding degrees of
freedom and the p-value for the test, in that order.

$hqc

Output: scalar

Returns the Hannan-Quinn Information Criterion for the last estimated model, if available. See
chapter 28 of the Gretl User’s Guide for details of the calculation.

$huge

Output: scalar

Returns a very large positive number. By default this is 1.0E100, but the value can be changed using
the set command.

$jalpha

Output: matrix

Must follow the estimation of a VECM, and returns the loadings matrix. It has as many rows as
variables in the VECM and as many columns as the cointegration rank.

$jbeta

Output: matrix

Must follow the estimation of a VECM, and returns the cointegration matrix. It has as many rows
as variables in the VECM (plus the number of exogenous variables that are restricted to the cointe-
gration space, if any), and as many columns as the cointegration rank.

$jvbeta

Output: square matrix

Must follow the estimation of a VECM, and returns the estimated covariance matrix for the elements
of the cointegration vectors.

In the case of unrestricted estimation, this matrix has a number of rows equal to the unrestricted
elements of the cointegration space after the Phillips normalization. If, however, a restricted system
is estimated via the restrict command with the --full option, a singular matrix with (n+m)r

Chapter 2. Gretl functions 120

rows will be returned (n being the number of endogenous variables, m the number of exogenous
variables that are restricted to the cointegration space, and r the cointegration rank).

Example: the code

open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals -q
s0 = $jvbeta

restrict --full
b[1,1] = 1
b[1,2] = -1
b[1,3] + b[1,4] = 0

end restrict
s1 = $jvbeta

print s0
print s1

produces the following output.

s0 (4 x 4)

0.019751 0.029816 -0.00044837 -0.12227
0.029816 0.31005 -0.45823 -0.18526

-0.00044837 -0.45823 1.2169 -0.035437
-0.12227 -0.18526 -0.035437 0.76062

s1 (5 x 5)

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.27398 -0.27398 -0.019059
0.0000 0.0000 -0.27398 0.27398 0.019059
0.0000 0.0000 -0.019059 0.019059 0.0014180

$lang

Output: string

Returns a string representing the national language in force currently, if this can be determined.
The string is composed of a two-letter ISO 639-1 language code (for example, en for English, jp for
Japanese, el for Greek) followed by an underscore plus a two-letter ISO 3166-1 country code. Thus
for example Portuguese in Portugal gives pt_PT while Portuguese in Brazil gives pt_BR.

If the national language cannot be determined, the string “unknown” is returned.

$llt

Output: series

For selected models estimated via Maximum Likelihood, returns the series of per-observation log-
likelihood values. At present this is supported only for binary logit and probit, tobit and heckit.

$lnl

Output: scalar

Returns the log-likelihood for the last estimated model (where applicable).

Chapter 2. Gretl functions 121

$macheps

Output: scalar

Returns the value of “machine epsilon”, which gives an upper bound on the relative error due to
rounding in double-precision floating point arithmetic.

$mapfile

Output: string

If data from a GeoJSON file or ESRI shapefile have been loaded, returns the name of the file that
should be opened to obtain the map polygons, otherwise returns an empty string. This is designed
for use with the geoplot function.

$mnlprobs

Output: matrix

Following estimation of a multinomial logit model (only), retrieves a matrix holding the estimated
probabilities of each possible outcome at each observation in the model’s sample range. Each
row represents an observation and each column an outcome. As of gretl 2023a this accessor is
deprecated: please use $allprobs instead.

$model

Output: bundle

Must follow estimation of a single-equation model; returns a bundle containing many items of data
pertaining to the model. All the regular model accessors are included: these are referenced by keys
that are the same as the regular accessor names, minus the leading dollar sign. So for example the
residuals appear under the key uhat and the error sum of squares under ess.

Depending on the estimator, additional information may be available; the keys for such information
should hopefully be fairly self-explanatory. To see what’s available you can get a copy of the bundle
and print its content, as in

ols y 0 x
bundle b = $model
print b

$mpirank

Output: integer

If gretl is built with MPI support, and the program is running in MPI mode, returns the 0-based
“rank” or ID number of the current process. Otherwise returns −1.

$mpisize

Output: integer

If gretl is built with MPI support, and the program is running in MPI mode, returns the number of
MPI processes currently running. Otherwise returns 0.

$ncoeff

Output: integer

Returns the total number of coefficients estimated in the last model.

Chapter 2. Gretl functions 122

$nobs

Output: integer

Returns the number of observations in the currently selected sample. Related: $tmax.

In the case of panel data the value returned is the number of pooled observations (number of units
times number of observations per unit). If you want the time-series length of a panel use $pd, and
the number of included units can be found as $nobs divided by $pd.

$now

Output: vector

Returns a 2-vector: its first element is the number of seconds elapsed since 1970-01-01 00:00:00
+0000 (UTC, or Coordinated Universal Time), which is widely used in the computing world to repre-
sent the current time, and the second is the current date in ISO 8601 “basic” format, YYYYMMDD. The
strftime function may be used to process the first element, and epochday may be used to process
the second.

$nvars

Output: integer

Returns the number of series in the dataset (including the constant). Since const is always present
in any dataset a return value of 0 indicates that no dataset is in place. Note that if this accessor is
used within a function, the number of series currently accessible may well fall short of that given
by $nvars.

$obsdate

Output: series

Applicable when the current dataset is time-series with annual, quarterly, monthly or decennial
frequency, or is dated daily or weekly, or when the dataset is a panel with time-series information
set appropriately (see the setobs command). The returned series holds 8-digit numbers on the
pattern YYYYMMDD (ISO 8601 “basic” date format), which correspond to the day of the observation,
or the first day of the observation period in case of a time-series frequency less than daily.

Such a series can be helpful when using the join command.

$obsmajor

Output: series

Returns a series holding the “major” or low-frequency component of each observation. This means
the year for annual, quarterly or monthly time series; the day for hourly data; or the individual in
the case of panel data. If the data are cross-sectional the series returned is just a 1-based index of
the observations.

See also $obsminor, $obsmicro.

$obsmicro

Output: series

Applicable when the observations in the current dataset have a major:minor:micro structure, as in
dated daily time series (year:month:day). Returns a series holding the micro or highest-frequency
component of each observation (for example, the day).

See also $obsmajor, $obsminor.

Chapter 2. Gretl functions 123

$obsminor

Output: series

Applicable when the observations in the current dataset have a major:minor structure, as in quar-
terly time series (year:quarter), monthly time series (year:month), hourly data (day:hour) and panel
data (individual:period). Returns a series holding the minor or high-frequency component of each
observation (for example, the month).

In the case of dated daily data, $obsminor gets the month of each observation.

See also $obsmajor, $obsmicro.

$panelpd

Output: integer

Specific to panel data, returns the time-series periodicity (e.g. 4 for quarterly data). If the periodicity
is not set in the active panel dataset, returns 1 in analogy to $pd for cross-sectional or undated data.
If the dataset is not a panel NA is returned.

See also $pd, $datatype, setobs.

$parnames

Output: array of strings

Following estimation of a single-equation model, returns an array of strings holding the names
of the model’s parameters. The number of names matches the number of elements in the $coeff
vector.

For models specified via a list of regressors the result will be the same as that of

varnames($xlist)

(see varnames), but $parnames is more general; it also works for models with no regressor list (nls,
mle, gmm).

$pd

Output: integer

Returns the frequency or periodicity of the data (e.g. 4 for quarterly data). In the case of panel data
the value returned is the total time-series length.

See also $panelpd.

$pi

Output: scalar

Returns the value of π in double precision.

$pkgdir

Output: string

A special facility for use by authors of function packages. Returns an empty string unless a pack-
aged function is executing, in which case it returns the full (platform dependent) path under which
the package is installed. For instance the return value might be

Chapter 2. Gretl functions 124

/usr/share/gretl/functions/foo

if that’s the directory in which foo.gfn is located. This enables package writers to access resources
such as matrix files that they have included in their package.

$pvalue

Output: scalar or matrix

Returns the p-value of the test statistic that was generated by the last explicit hypothesis-testing
command, if any (for example, chow). See chapter 10 of the Gretl User’s Guide for details.

In most cases the return value is a scalar but sometimes it is a matrix (for example, the trace and
lambda-max p-values from the Johansen cointegration test); in that case the values in the matrix
are laid out in the same pattern as the printed results.

See also $test.

$qlrbreak

Output: scalar

Must follow an invocation of the qlrtest command (the QLR test for a structural break at an un-
known point). The value returned is the 1-based index of the observation at which the test statistic
is maximized.

$result

Output: matrix or bundle

Provides stored information following certain commands that do not have specific accessors. The
commands in question include bds, bkw, corr, fractint, freq, hurst, leverage, summary, vif and xtab
(in which cases the result is a matrix), plus pkg (which optionally stores a bundle result).

$rho

Output: scalar

Argument: n (scalar, optional)

Without arguments, returns the first-order autoregressive coefficient for the residuals of the last
model. After estimating a model via the ar command, the syntax $rho(n) returns the correspond-
ing estimate of ρ(n).

$rsq

Output: scalar

Returns the unadjusted R2 from the last estimated model, if available. Usually this will be the
regular (centered) R2 but if the specification contains no constant (and no set of regressors that
“add up to” a constant) it will be the uncentered version. In that case the centered version can be
accessed as $model.centered_R2.

$sample

Output: series

Must follow estimation of a single-equation model. Returns a dummy series with value 1 for ob-
servations used in estimation, 0 for observations within the currently defined sample range but

Chapter 2. Gretl functions 125

not used (presumably because of missing values), and NA for observations outside of the current
range.

If you wish to compute statistics based on the sample that was used for a given model, you can do,
for example:

ols y 0 xlist
series sdum = $sample
smpl sdum --dummy

$sargan

Output: row vector

Must follow a tsls command. Returns a 1 × 3 vector, containing the value of the Sargan over-
identification test statistic, the corresponding degrees of freedom and p-value, in that order. If the
model is exactly identified, the statistic is unavailable, and trying to access it provokes an error.

$seed

Output: scalar

Returns the value with which gretl’s random number generator was seeded. If you set the seed
yourself there’s no need to use this accessor, but it may be of interest if the seed was set automat-
ically (based on the time that execution of the program started).

$sigma

Output: scalar or matrix

Requires that a model has been estimated. If the last model was a single equation, returns the
(scalar) Standard Error of the Regression (or in other words, the standard deviation of the residuals,
with an appropriate degrees of freedom correction). If the last model was a system of equations,
returns the cross-equation covariance matrix of the residuals.

$stderr

Output: matrix or scalar

Argument: s (name of coefficient, optional)

With no arguments, $stderr returns a column vector containing the standard error of the coeffi-
cients for the last model. With the optional string argument it returns a scalar, namely the standard
error of the parameter named s.

If the “model” in question is actually a system, the result depends on the characteristics of the sys-
tem: for VARs and VECMs the value returned is a matrix with one column per equation, otherwise
it is a column vector containing the coefficients from the first equation followed by those from the
second equation, and so on.

See also $coeff, $vcv.

$stopwatch

Output: scalar

Must be preceded by set stopwatch, which activates the measurement of CPU time. The first
use of this accessor yields the seconds of CPU time that have elapsed since the set stopwatch
command. At each access the clock is reset, so subsequent uses of $stopwatch yield the seconds
of CPU time since the previous access.

Chapter 2. Gretl functions 126

When a user-defined function is executing, the set stopwatch command and $stopwatch acces-
sor are specific to that function—that is, timing within a function does not disrupt any “global”
timing that may be going on in the main script.

$sysA

Output: matrix

Must follow estimation of a simultaneous equations system. Returns the matrix of coefficients
on the lagged endogenous variables, if any, in the structural form of the system. See the system
command.

$sysB

Output: matrix

Must follow estimation of a simultaneous equations system. Returns the matrix of coefficients on
the exogenous variables in the structural form of the system. See the system command.

$sysGamma

Output: matrix

Must follow estimation of a simultaneous equations system. Returns the matrix of coefficients on
the contemporaneous endogenous variables in the structural form of the system. See the system
command.

$sysinfo

Output: bundle

Returns a bundle containing information on the capabilities of the gretl build and the system on
which gretl is running. The members of the bundle are as follows:

• gui_mode: integer, equals 1 if libgretl is being called by the GUI program, otherwise 0.

• mpi: integer, equals 1 if the system supports MPI (Message Passing Interface), otherwise 0.

• omp: integer, equals 1 if gretl is built with support for Open MP, otherwise 0.

• ncores: integer, the number of physical processor cores available.

• nproc: integer, the number of processors available, which will be greater than ncores if
hyper-threading is enabled.

• mpimax: integer, the maximum number of MPI processes that can be run in parallel. This is
zero if MPI is not supported, otherwise it equals the local nproc value unless an MPI hosts file
has been specified, in which case it is the sum of the number of processors or “slots” across
all the machines referenced in that file.

• wordlen: integer, either 32 or 64 for 32- and 64-bit systems respectively.

• os: string representing the operating system, either linux, macos, windows or other. Note
that versions of gretl prior to 2021e gave the string osx for the Mac operating system; a
version-independent test for Mac is therefore instring($sysinfo.os, "os")

• hostname: the name of the host machine on which the current gretl process is running (with
a fallback of localhost in case the name cannot be determined).

Chapter 2. Gretl functions 127

• mem: a 2-vector holding total physical memory and free or available memory, expressed in MB.
This information may not be available on all systems but should be on Windows, macOS and
Linux.

• blas: string identifying the supplier of the BLAS (Basic Linear Algebra Subprograms) library
in use by gretl.

• blas_version: string identifying the version number of the blas library in use.

• blascore: (if applicable) a string identifying the CPU type for which the current blas library
is optimized.

• compiler: a string identifying the compiler used when building libgretl.

• cpuid: a string identifying the vendor and model of the CPU on which libgretl is running.

• gnuplot: a string identifying the version of gnuplot available to gretl for plotting, in the form
of three dot-separated numbers giving major version, minor version and patchlevel.

• foreign: a sub-bundle containing 0/1 indicators for the presence on the host system of each
of the “foreign” programs supported by gretl, under the keys julia, octave, ox, python,
Rbin, Rlib and stata. The two keys pertaining to R represent the R executable and shared
library, respectively.

Note that individual elements in the bundle can be accessed using “dot” notation without any need
to copy the whole bundle under a user-specified name. For example,

if $sysinfo.os == "linux"
do something linux-specific

endif

$system

Output: bundle

Must follow estimation of a system of equations via one of the commands system, var or vecm;
returns a bundle containing many items of data pertaining to the system. All the relevant regular
system accessors are included: these are referenced by keys that are the same as the regular acces-
sor names, minus the leading dollar sign. So for example the residuals appear under the key uhat
and the coefficients under coeff. (Exceptions are the keys A, B, and Gamma, which correspond to the
regular dollar accessors sysA, sysB, and sysGamma.) The keys for additional information should
hopefully be fairly self-explanatory. To see what’s available you can get a copy of the bundle and
print its content, as in

var 4 y1 y2 y2
bundle b = $system
print b

A bundle obtained in this way can be passed as the final, optional argument to the functions fevd
and irf.

$T

Output: integer

Returns the number of observations used in estimating the last model.

Chapter 2. Gretl functions 128

$t1

Output: integer

Returns the 1-based index of the first observation in the currently selected sample.

$t2

Output: integer

Returns the 1-based index of the last observation in the currently selected sample.

$test

Output: scalar or matrix

Returns the value of the test statistic that was generated by the last explicit hypothesis-testing
command, if any (e.g. chow). See chapter 10 of the Gretl User’s Guide for details.

In most cases the return value is a scalar but sometimes it is a matrix (for example, the trace and
lambda-max statistics from the Johansen cointegration test); in that case the values in the matrix
are laid out in the same pattern as the printed results.

See also $pvalue.

$time

Output: series

For time-series or panel data, creates a 1-based index of the time period. In the panel case the
sequence of values repeats for each cross-sectional unit.

The command “genr time” is an alternative, with the difference that the genr variant automatically
creates a series called time while the naming of the series is up to the caller when using $time, as
in

series trend = $time

This accessor is not available for cross-sectional data.

$tmax

Output: integer

Returns the maximum legal setting for the end of the sample range via the smpl command. In most
cases this will equal the number of observations in the dataset but within a hansl function the
$tmax value may be smaller, since in general data access within functions is limited to the sample
range set by the caller.

Note that $tmax does not in general equal $nobs, which gives the number of observations in the
current sample range.

$trsq

Output: scalar

Returns TR2 (sample size times R-squared) from the last model, if available.

Chapter 2. Gretl functions 129

$uhat

Output: series

Returns the residuals from the last model. This may have different meanings for different estima-
tors. For example, after an ARMA estimation $uhat will contain the one-step-ahead forecast error;
after a probit model, it will contain the generalized residuals.

If the “model” in question is actually a system (a VAR or VECM, or system of simultaneous equa-
tions), $uhat retrieves the matrix of residuals, one column per equation.

$unit

Output: series

Valid for panel datasets only. Returns a series with value 1 for all observations on the first unit or
group, 2 for observations on the second unit, and so on.

$vcv

Output: matrix or scalar

Arguments: s1 (name of coefficient, optional)

s2 (name of coefficient, optional)

With no arguments, $vcv returns a square matrix containing the estimated covariance matrix for
the coefficients of the last model. If the last model was a single equation, then you may supply
the names of two parameters in parentheses to retrieve the estimated covariance between the
parameters named s1 and s2. See also $coeff, $stderr.

This accessor is not available for VARs or VECMs; for models of that sort see $sigma and $xtxinv.

$vecGamma

Output: matrix

Must follow the estimation of a VECM; returns a matrix in which the Gamma matrices (coefficients
on the lagged differences of the cointegrated variables) are stacked side by side. Each row repre-
sents an equation; for a VECM of lag order p there are p − 1 sub-matrices.

$version

Output: scalar

Returns an integer value that codes for the program version. The current gretl version string takes
the form of a 4-digit year followed by a letter from a to j representing the sequence of releases
within the year (for example, 2015d). The return value from this accessor is formed as 10 times the
year plus the zero-based lexical order of the letter, so 2015d translates to 20153.

Prior to gretl 2015d, version identifiers took the form x.y.z (three integers separated by dots), and
in that case the accessor value was calculated as 10000*x + 100*y + z, so that for example 1.10.2
(the last release under the old scheme) translates as 11002. Numerical order of $version values is
therefore preserved across the change in versioning scheme.

$vma

Output: matrix

Must follow the estimation of a VAR or a VECM; returns a matrix containing the VMA representation
up to the order specified via the set horizon command. See chapter 32 of the Gretl User’s Guide
for details.

Chapter 2. Gretl functions 130

$windows

Output: integer

Returns 1 if gretl is running on MS Windows, otherwise 0. By conditioning on the value of this
variable you can write shell calls that are portable across different operating systems.

Also see the shell command.

$workdir

Output: string

This accessor returns the path which gretl reads from and writes to by default. A fuller discussion
is provided in the Command Reference under workdir. Note that this string can be set by the user
via the set command.

$xlist

Output: list

If the last model was a single equation, returns the list of regressors. If the last model was a
system of equations, returns the “global” list of exogenous variables (in the same order in which
they appear in $sysB). If the last model was a VAR, returns the list of exogenous regressors, if any,
except for standard deterministic terms (constant, trend, seasonals).

$xtxinv

Output: matrix

Following estimation of a VAR or VECM (only), returns X′X−1, where X is the common matrix of
regressors used in each of the equations. While this accessor is available for a VECM estimated with
a restriction imposed on α (the “loadings” matrix), it should be borne in mind that in that case not
all coefficients of the regressors are freely varying.

$yhat

Output: series

Returns the fitted values from the last regression.

$ylist

Output: list

If the last model estimated was a VAR, VECM or simultaneous system, returns the associated list
of endogenous variables. If the last model was a single equation, this accessor gives a list with a
single element, the dependent variable. In the special case of the biprobit model the list contains
two elements.

2.3 Built-in strings

$dotdir

Output: string

Yields the full path of the directory gretl uses for temporary files. To use it in string-substitution
mode, prepend the at-sign (@dotdir).

Chapter 2. Gretl functions 131

$gnuplot

Output: string

Yields the path to the gnuplot executable. To use it in string-substitution mode, prepend the at-sign
(@gnuplot).

$gretldir

Output: string

Yields the full path of the gretl installation directory. To use it in string-substitution mode, prepend
the at-sign (@gretldir).

$tramo

Output: string

Yields the path to the tramo executable. To use it in string-substitution mode, prepend the at-sign
(@tramo)

$tramodir

Output: string

Yields the path string of the tramo data directory. To use it in string-substitution mode, prepend
the at-sign (@tramodir).

$x12a

Output: string

Yields the path to the x-12-arima executable. To use it in string-substitution mode, prepend the
at-sign (@x12a).

$x12adir

Output: string

Yields the path of the x-12-arima data directory. To use it in string-substitution mode, prepend the
at-sign (@x12adir).

2.4 Functions proper

abs

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the absolute value of x.

acos

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the arc cosine of x, that is, the value whose cosine is x. The result is in radians; the input
should be in the range −1 to 1.

Chapter 2. Gretl functions 132

acosh

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the inverse hyperbolic cosine of x (positive solution). x should be greater than 1; otherwise,
NA is returned. See also cosh.

aggregate

Output: matrix

Arguments: x (series, list or matrix)

byvar (series, list or matrix)

funcname (string, optional)

Most of the following assumes that the first two arguments to this function take the form of series
or lists, but see “Matrix input” below for alternative usage.

In the most minimal usage, x is set to null, byvar is a single series and the third argument is
omitted, or set to null. In this case, the return value is a matrix with two columns holding, re-
spectively, the distinct values of byvar, sorted in ascending order, and the count of observations at
which byvar takes on each of these values. For example,

open data4-1
eval aggregate(null, bedrms)

will show that the series bedrms has values 3 (with count 5) and 4 (with count 9).

More generally, if byvar is a list with n members, then the left-hand n columns hold the combi-
nations of the distinct values of each of the n series and the count column holds the number of
observations at which each combination is realized. Note that the count column can always be
found at the position nelem(byvar) + 1.

Specifying an aggregation function

If the third argument is given, then x must not be null, and the rightmost m columns hold the
values of the statistic specified by funcname for each of the variables in x. (Thus, m is equal
to 1 if x is a single series and equal to nelem(x) if x is a list.) The given statistic is calculated
on the respective sub-samples defined by the combinations in byvar (in ascending order); these
combinations are shown in the first n column(s) of the returned matrix.

So, in the special case where x and byvar are both individual series, the return value is a matrix
with three columns holding, respectively, the distinct values of byvar, sorted in ascending order;
the count of observations at which byvar takes on each of these values; and the values of the
statistic specified by funcname calculated on series x, using only those observations at which byvar
takes on the value given in the first column.

The following values of funcname are supported “natively”: sum, sumall, mean, sd, var, sst, skew-
ness, kurtosis, min, max, median, nobs, gini, isconst and isdummy. Each of these functions takes a
series argument and returns a scalar value, and in that sense can be said to “aggregate” the series
in some way. If none of these built-in functions does what you need, you can give the name of a
user-defined function as the aggregator; like the built-ins, such a function must take a single series
argument and return a scalar value.

Note that although a count of cases is provided automatically the nobs function is not redundant
as an aggregator, since it gives the number of valid (non-missing) observations on x at each byvar
combination.

Chapter 2. Gretl functions 133

For a simple example, suppose that region represents a coding of geographical region using integer
values 1 to n, and income represents household income. Then the following would produce an n×3
matrix holding the region codes, the count of observations in each region, and mean household
income for each of the regions:

matrix m = aggregate(income, region, mean)

For an example using lists, let gender be a male/female dummy variable, let race be a categorical
variable with three values, and consider the following:

list BY = gender race
list X = income age
matrix m = aggregate(X, BY, sd)

The aggregate call here will produce a 6 × 5 matrix. The first two columns hold the 6 distinct
combinations of gender and race values; the middle column holds the count for each of these
combinations; and the rightmost two columns contain the sample standard deviations of income
and age.

Note that if byvar is a list, some combinations of the byvar values may not be present in the data
(giving a count of zero). In that case the value of the statistics for x are recorded as NaN (not a
number). If you want to ignore such cases you can use the selifr function to select only those rows
that have a non-zero count. The column to test is one place to the right of the number of byvar
variables, so we can do:

matrix m = aggregate(X, BY, sd)
scalar c = nelem(BY)
m = selifr(m, m[,c+1])

Matrix input

Instead of series or lists, x and byvar may be given in matrix form. However, if both arguments are
provided they must match in type (you cannot give a series or list for one argument and a matrix
for the other) and two matrix arguments must have the same number of rows. Also note that in
this context matrix columns are treated as if they were series, so the aggregation function must
follow the pattern described above, taking a series argument and returning a scalar.

argname

Output: string

Arguments: s (string)

default (string, optional)

For s the name of a parameter to a user-defined function, returns the name of the corresponding
argument, if the argument had a name at the caller level. If the argument was anonymous, an empty
string is returned unless the optional default argument is provided, in which case its value is used
as a fallback.

array

Output: see below

Argument: n (integer)

Chapter 2. Gretl functions 134

The basic “constructor” function for a new array variable. In using this function you must specify
a type (in plural form) for the array: strings, matrices, bundles, lists or arrays. The return
value is an array of the specified type with n elements, each of which is initialized as “empty” (e.g.
zero-length string, null matrix). Examples of usage:

strings S = array(5)
matrices M = array(3)

See also defarray.

asin

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the arc sine of x, that is, the value whose sine is x. The result is in radians; the input should
be in the range −1 to 1.

asinh

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the inverse hyperbolic sine of x. See also sinh.

asort

Output: scalar

Arguments: a (array)

fname (string)

Performs an in-place sort of the elements of a, using a comparator function specified by the caller
under the control of the quicksort routine.

The argument a can be of any of the types supported for a gretl array, namely strings, matrices,
bundles, lists or arrays. The fname argument must be the name of a function which takes two
const arguments, whose type matches that of the elements of a. This function must return an
integer value on the following pattern: 0 if the two arguments have the same sort order, negative
if the first argument sorts before the second, or positive if the second sorts before the first. (The
exact values do not matter.)

For example, suppose one wants to sort an array of bundles, each of which contains a scalar named
crit, by increasing value of crit. Then the following function would be suitable for passing to
asort:

function scalar my_bsort (const bundle b1, const bundle b2)
return sgn(b1.crit - b2.crit)

end function

If you want to preserve the unsorted array, make a copy of it before passing it to asort. The return
value from this function is a nominal 0 on success.

See also sort for simple sorting of an array of strings.

Chapter 2. Gretl functions 135

assert

Output: scalar

Argument: expr (scalar)

This function is intended for testing or debugging of hansl code. The argument should be an
expression which evaluates to a scalar. The return value is 1 if expr evaluates to a non-zero value
(boolean “true”, or “success”) or 0 if it evaluates to zero (boolean “false”, or “failure”).

By default there are no consequences of a call to assert failing other than the return value being
zero. However, the set command can be used to make failure of an assertion more consequential.
There are three levels:

print a warning message but continue execution
set assert warn
print an error message and stop script execution
set assert stop
print a message to stderr and abort the program
set assert fatal

In most cases stop is sufficient to terminate a script but in certain special cases (such as within a
function called from a command block such as mle) it may be necessary to use the fatal setting
to get a clear indication of the failing assertion. Note, however, that in this case the message will
go to standard error output.

The default behavior can be restored via

set assert off

By way of a simple example, if at a certain point in a hansl script a scalar x ought to be non-negative,
the following will flag an error if that is not the case:

set assert stop
assert(x >= 0)

atan

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the arc tangent of x, that is, the value whose tangent is x. The result is in radians.

See also tan, atan2.

atan2

Output: same type as input

Arguments: y (scalar, series or matrix)

x (scalar, series or matrix)

Returns the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result. The return value is in radians, in the range [−π , π].

If the two arguments differ in type, the type of the result is the “higher” of the two, where the
ordering is matrix > series > scalar. For example, if y is a scalar and x an n-vector (or vice versa)

Chapter 2. Gretl functions 136

the result is an n-vector. Note that matrix arguments must be vectors, and if neither argument is a
scalar the two arguments must be of the same length.

See also tan, tanh.

atanh

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the inverse hyperbolic tangent of x. See also tanh.

atof

Output: scalar

Argument: s (string)

Closely related to the C library function of the same name. Returns the result of converting the
string s (or the leading portion thereof, after discarding any initial white space) to a floating-point
number. Unlike atof in C, however, the decimal character is always assumed (for reasons of porta-
bility) to be “.”. Any characters that follow the portion of s that converts to a floating-point number
under this assumption are ignored.

If none of s (following any discarded white space) is convertible under the stated assumption, NA is
returned.

examples
x = atof("1.234") # gives x = 1.234
x = atof("1,234") # gives x = 1
x = atof("1.2y") # gives x = 1.2
x = atof("y") # gives x = NA
x = atof(",234") # gives x = NA

See also sscanf for more flexible string to numeric conversion.

bcheck

Output: scalar

Arguments: target (reference to bundle)

input (bundle, optional)

required-keys (array of strings, optional)

Primarily intended for use by writers of function packages. Here is the context in which bcheck
may be useful: you have a function which accepts a bundle argument whereby the caller can make
various choices. Some elements of the bundle may have default values—so the caller is not obliged
to make an explicit choice—while other elements may be required. You want to determine whether
the argument you get is valid. The main text below assumes that an input bundle is supplied by
the caller of your function, but see the section headed “No input bundle” for the contrary case.

To use bcheck you construct a template bundle containing all the supported keys, with values that
exemplify the type associated with each key, and pass this in pointer form as target. For the second
argument, input, pass the bundle you get from the caller. This function then checks the following:

• Does input contain any keys not present in target? If so, bcheck returns a non-zero value,
indicating that input is erroneous. (Most likely, the key in question is misspelled.)

• Does input contain under any given key an object whose type does not match that in target?
If so, a non-zero value is returned.

Chapter 2. Gretl functions 137

• If some elements in target require input from the caller (so the value you supply is not a
default value, just a placeholder to indicate the required type), you should supply a third
argument to bcheck: an array of strings holding the keys for which input is not optional.
Then the return value will be non-zero if any required elements are missing from input.

In addition to the above you may wish to impose lower and/or upper bounds on the value of one or
more scalar members of the bundle argument. If so, add a bundle named bounds to your template
bundle. Each member of this secondary bundle should have a key that identifies a member of the
template bundle; its value should be a 2-vector holding lower and upper limits. Put NA in place of
one of the limits if it is unbounded. So, for example, the following code will check that if x1 is given
in the caller’s input it is between 1 and 5, and if x2 is given it is non-negative:

template.bounds = _(x1={1,5}, x2={0,NA})

If no errors are detected on any of these points, values supplied in input are copied to target
(defaults being replaced by valid selections on the caller’s part). If errors are found a message will
be printed indicating what is wrong with input.

To give a simple example, suppose your function’s argument bundle supports a matrix X (required),
a non-negative scalar z with default value 0, and a string s with default value “display”. Then the
following code fragment would be suitable for checking a bundle named uservals supplied by the
caller:

bundle target = _(X={}, z=0, s="display")
target.bounds = _(z={0,NA})
strings req = defarray("X")
err = bcheck(&target, uservals, req)
if err

react appropriately
else

proceed, using the values in target
endif

No input bundle

If the input bundle is not supplied to bcheck, it behaves as follows. If the required-keys argument
is not given, it returns zero (since none of the error conditions mentioned above can occur), and
target is not modified. Otherwise it returns non-zero since it’s clear that one or more specifications
must be missing. This means that it’s safe to pass a null input to bcheck.

bessel

Output: same type as input

Arguments: type (character)

v (scalar)

x (scalar, series or matrix)

Computes one of the Bessel function variants for order v and argument x. The return value is of
the same type as x. The specific function is selected by the first argument, which must be J, Y, I,
or K. A good discussion of the Bessel functions can be found on Wikipedia; here we give a brief
account.

case J: Bessel function of the first kind. Resembles a damped sine wave. Defined for real v and x,
but if x is negative then v must be an integer.

Chapter 2. Gretl functions 138

case Y: Bessel function of the second kind. Defined for real v and x but has a singularity at x = 0.

case I: Modified Bessel function of the first kind. An exponentially growing function. Acceptable
arguments are as for case J.

case K: Modified Bessel function of the second kind. An exponentially decaying function. Diverges
at x = 0 and is not defined for negative x. Symmetric around v = 0.

BFGSmax

Output: scalar

Arguments: &b (reference to matrix)

f (function call)

g (function call, optional)

Numerical maximization via the method of Broyden, Fletcher, Goldfarb and Shanno. On input the
vector b should hold the initial values of a set of parameters, and the argument f should specify a
call to a function that calculates the (scalar) criterion to be maximized, given the current parameter
values and any other relevant data. If the object is in fact minimization, this function should return
the negative of the criterion. On successful completion, BFGSmax returns the maximized value of
the criterion, and b holds the parameter values which produce the maximum.

The optional third argument provides a means of supplying analytical derivatives (otherwise the
gradient is computed numerically). The gradient function call g must have as its first argument a
predefined matrix that is of the correct size to contain the gradient, given in pointer form. It also
must take the parameter vector as an argument (in pointer form or otherwise). Other arguments
are optional.

For more details and examples see chapter 37 of the Gretl User’s Guide. See also BFGScmax, NRmax,
fdjac, simann.

BFGSmin

Output: scalar

An alias for BFGSmax; if called under this name the function acts as a minimizer.

BFGScmax

Output: scalar

Arguments: &b (reference to matrix)

bounds (matrix)

f (function call)

g (function call, optional)

Constrained numerical maximization using L-BFGS-B (limited memory BFGS, see Byrd et al. (1995)).
On input the vector b should hold the initial values of a set of parameters, bounds should hold
bounds on the parameter values (see below), and f should specify a call to a function that calculates
the (scalar) criterion to be maximized, given the current parameter values and any other relevant
data. If the object is in fact minimization, this function should return the negative of the criterion.
On successful completion, BFGScmax returns the maximized value of the criterion, subject to the
constraints in bounds, and b holds the parameter values which produce the maximum.

Bounds on parameters

The bounds matrix must have 3 columns and as many rows as there are constrained elements in
the parameter vector. The first element on a given row is the (1-based) index of the constrained
parameter; the second and third are the lower and upper bounds, respectively. The values -$huge

Chapter 2. Gretl functions 139

and $huge should be used to indicate that the parameter is unconstrained downward or upward,
respectively. For example, the following is the way to specify that the second element of the pa-
rameter vector must be non-negative:

matrix bounds = {2, 0, $huge}

Analytical derivatives

The optional fourth argument provides a means of supplying analytical derivatives (otherwise the
gradient is computed numerically). The gradient function call g must have as its first argument a
predefined matrix that is of the correct size to contain the gradient, given in pointer form. It also
must take the parameter vector as an argument (in pointer form or otherwise). Other arguments
are optional.

For more details and examples see chapter 37 of the Gretl User’s Guide. See also BFGSmax, NRmax,
fdjac, simann.

BFGScmin

Output: scalar

An alias for BFGScmax; if called under this name the function acts as a minimizer.

bin2dec

Output: matrix

Argument: B (matrix)

Given a matrix B containing only zeros and ones, this function interprets each row as the binary
representation of a 32-bit unsigned integer, and returns a column vector with the decimal repre-
sentation of those integers. The argument cannot have more than 32 columns otherwise an error
is flagged.

Note that the least significant bit comes in the first column. So column 1 corresponds to 20, column
2 to 21, and so on. For example, the expression

scalar x = bin2dec({1,0,1})

stores the value 5 into x.

The dec2bin function performs the inverse transformation.

bincoeff

Output: same type as input

Arguments: n (scalar, series or matrix)

k (scalar, series or matrix)

Returns the binomial coefficient, that is the number of ways in which k items can be chosen from n
items without repetition, irrespective of ordering. This is also equal to the coefficient of the (k+1)-th
term in the polynomial expansion of the binomial power (1+ x)n.

For integer arguments the result is n!/(k!(n − k)!) but the function also accepts noninteger argu-
ments, and the formula above generalizes to Γ(n+1)Γ(k+1)Γ(n−k+1) .

When k > n or k < 0 no valid answer exists and an error is flagged.

Chapter 2. Gretl functions 140

If the two arguments differ in type, the type of the result is the “higher” of the two, where the
ordering is matrix > series > scalar. For example, if n is a scalar and k an r -vector (or vice versa)
the result is an r -vector. Note that matrix arguments must be vectors, and if neither argument is a
scalar the two arguments must be of the same length.

See also gammafun and lngamma.

binperms

Output: matrix

Arguments: n (integer)

k (integer)

Binary permutations: returns a p×n matrix, each of whose rows holds a distinct arrangement of k
ones and n − k zeros (in lexicographic order). The maximum supported value of n is 64, n and k
must be non-negative, and k must be no greater than n; otherwise an error is flagged. In case n =
k = 0 an empty matrix is returned.

For example, with n = 4 and k = 2, the result is

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0

Warning: the number of permutations, p, is a steeply increasing function of n and is greatest when
k is about half of n. You may want to check in advance the size of the matrix that binperms
will attempt to allocate. The bincoeff function returns p, and the size of the resulting matrix in
megabytes can be calculated as

MB = 8 * n * bincoeff(n, k) / 10^6

For n = 30, this gives about 34 MB when k = 25, 7211 MB if k = 20, and 20758 MB if k = 18.

bkfilt

Output: series

Arguments: y (series)

f1 (integer, optional)

f2 (integer, optional)

k (integer, optional)

Returns the result from application of the Baxter–King bandpass filter to the series y. The op-
tional parameters f1 and f2 represent, respectively, the lower and upper bounds of the range of
frequencies to extract, while k is the approximation order to be used.

If these arguments are not supplied then the default values depend on the periodicity of the dataset.
For yearly data the defaults for f1, f2 and k are 2, 8 and 3, respectively; for quarterly data, 6, 32
and 12; for monthly data, 18, 96 and 36. These values are chosen to match the most common
choice among practitioners, that is to use this filter for extracting the “business cycle” frequency
component; this, in turn, is commonly defined as being between 18 months and 8 years. The filter,
per default choice, spans 3 years of data.

Chapter 2. Gretl functions 141

If f2 is greater than or equal to the number of available observations, then the “low-pass” version of
the filter will be run and the resulting series should be taken as an estimate of the trend component,
rather than the cycle. See also bwfilt, hpfilt.

bkw

Output: matrix

Arguments: V (matrix)

parnames (array of strings, optional)

verbose (boolean, optional)

Computes BKW collinearity diagnostics (see Belsley et al. (1980)) given a covariance matrix of pa-
rameter estimates, V. The optional second argument, which can be an array of strings or a string
containing comma-separated names, is used to label the columns showing the variance propor-
tions; the number of names should match the dimension of V. After estimation of a model in gretl,
suitable arguments can be obtained via the $vcv and $parnames accessors.

By default this function operates silently, just returning the BKW table as a matrix, but if a non-zero
value is given for the third argument the table is printed along with some analysis.

There is also a command form of this facility, bkw, which automatically references the last model
and requires no arguments.

boxcox

Output: same type as input

Arguments: y (series or matrix)

d (scalar)

Returns the Box–Cox transformation with parameter d for the positive series y (or the columns of
matrix y).

y(d)t =

 ydt −1
d if d ≠ 0

log(yt) if d = 0

bread

Output: bundle

Arguments: fname (string)

import (boolean, optional)

Reads a bundle from the file specified by the fname argument. By default the bundle is assumed to
be represented in XML, and to be gzip-compressed if fname has extension .gz. But if the extension
is .json or .geojson the content is assumed to be JSON.

In the XML case the file must contain a gretl-bundle element, which is used to store zero or more
bundled-item elements. For example,

<?xml version="1.0" encoding="UTF-8"?>
<gretl-bundle name="temp">
<bundled-item key="s" type="string">moo</bundled-item>
<bundled-item key="x" type="scalar">3</bundled-item>
</gretl-bundle>

As you might expect, files suitable for reading via bread are generated by the companion function
bwrite.

Chapter 2. Gretl functions 142

If the file name does not contain a full path specification, it will be looked for in several “likely”
locations, beginning with the currently set workdir. However, if a non-zero value is given for the
optional import argument, the input file is taken to be in the user’s “dot” directory. In that case
fname should be a plain file name, without any path component.

Should an error occur (such as the file being badly formatted or inaccessible), an error is returned
via the $error accessor.

See also mread, bwrite.

brename

Output: scalar

Arguments: B (bundle)

oldkey (string)

newkey (string)

If the bundle B contains a member under the key oldkey, its key is changed to newkey, otherwise
an error is flagged. Returns 0 on successful renaming.

Changing the key of a bundle member is not a common task but it can arise in the context of
functions that work with bundles, and brename is an efficient tool for the job. Example:

set up a bundle holding a big matrix
bundle b
b.X = mnormal(1000, 1000)
if 0

change the key manually
Xcopy = b.X
delete b.X
b.Y = Xcopy
delete Xcopy

else
versus: change it efficiently
brename(b, "X", "Y")

endif

The first method requires that the big matrix be copied twice, out of the bundle then back into it
under a different key; the efficient method changes the key directly.

bwfilt

Output: series

Arguments: y (series)

n (integer)

omega (scalar)

Returns the result from application of a low-pass Butterworth filter with order n and frequency
cutoff omega to the series y. The cutoff is expressed in degrees and must be greater than 0 and
less than 180. Smaller cutoff values restrict the pass-band to lower frequencies and hence produce
a smoother trend. Higher values of n produce a sharper cutoff, at the cost of possible numerical
instability.

Inspecting the periodogram of the target series is a useful preliminary when you wish to apply this
function. See chapter 30 of the Gretl User’s Guide for details. See also bkfilt, hpfilt.

Chapter 2. Gretl functions 143

bwrite

Output: integer

Arguments: B (bundle)

fname (string)

export (boolean, optional)

Writes the bundle B to file, serialized in XML or, if fname has extension .json or .geojson, as
JSON. See bread for a description of the format when XML is used. If fname already exists, it will
be overwritten. The nominal return value is 0 on successful completion; if writing fails an error is
flagged.

The output file will be written in the currently set workdir, unless fname contains a full path
specification. However, if a non-zero value is given for the export argument, the file will be written
into the user’s “dot” directory. In that case a plain file name, without any path component, should
be given for the second argument.

In the case of XML output (only), the option of gzip compression is available; this is applied if fname
has the extension .gz.

See also bread, mwrite.

carg

Output: matrix

Argument: C (complex matrix)

Returns anm×n real matrix holding the complex “argument” of each element of them×n complex
matrix C. The argument of the complex number z = x + yi can also be computed as atan2(y, x).

See also abs, cmod, atan2.

cdemean

Output: matrix

Arguments: X (matrix)

standardize (boolean, optional)

skip_na (boolean, optional)

Centers the columns of matrix X around their means. If the optional second argument has a non-
zero value then in addition the centered values are divided by the column standard deviations
(which are calculated using n − 1 as divisor, where n is the number of rows of X).

If a non-zero value is supplied for skip_na missing values are ignored, otherwise if a column of X
contains any missing values the corresponding column in the output is all missing.

Note that stdize provides more flexible functionality.

cdf

Output: same type as input

Arguments: d (string)

\dots {} (see below)

x (scalar, series or matrix)

Examples: p1 = cdf(N, -2.5)

p2 = cdf(X, 3, 5.67)

p3 = cdf(D, 0.25, -1, 1)

Chapter 2. Gretl functions 144

Cumulative distribution function calculator. Returns P(X ≤ x), where the distribution of X is
determined by the string d. Between the arguments d and x, zero or more additional scalar ar-
guments are required to specify the parameters of the distribution, as follows (but note that the
normal distribution has its own convenience function, cnorm).

Distribution d Arg 2 Arg 3 Arg 4

Standard normal z, n or N – – –

Bivariate normal D ρ – –

Logistic lgt – – –

Student’s t (central) t df – –

Chi square c, x or X df – –

Snedecor’s F f or F df (num.) df (den.) –

Gamma g or G shape scale –

Binomial b or B probability trials –

Poisson p or P mean – –

Exponential exp scale – –

Weibull w or W shape scale –

Laplace l or L mean scale –

Generalized Error E shape – –

Non-central χ2 ncX df non-centrality –

Non-central F ncF df (num.) df (den.) non-centrality

Non-central t nct df non-centrality –

Note that most cases have aliases to help memorizing the codes. The bivariate normal case is spe-
cial: the syntax is x = cdf(D, rho, z1, z2) where rho is the correlation between the variables
z1 and z2.

The parametrization gretl uses for the Gamma random variate implies that its density function can
be written as

f(x;k, θ) = x
k−1

θk
e−x/θΓ(k)

where k > 0 is the shape parameter and θ > 0 is the scale parameter.

See also pdf, critical, invcdf, pvalue.

cdiv

Output: matrix

Arguments: X (matrix)

Y (matrix)

This is a legacy function, predating gretl’s native support for complex matrices.

Complex division. The two arguments must have the same number of rows, n, and either one or
two columns. The first column contains the real part and the second (if present) the imaginary part.
The return value is an n × 2 matrix or, if the result has no imaginary part, an n-vector. See also
cmult.

cdummify

Output: list

Argument: L (list)

Chapter 2. Gretl functions 145

This function returns a list in which each series in L that has the “coded” attribute is replaced by
a set of dummy variables representing each of its coded values, with the least value omitted. If L
contains no coded series the return value will be identical to L.

The generated dummy variables, if any, are named on the pattern Dvarname_vi where vi is the ith

represented value of the coded variable. In case any values are negative, “m” is inserted before the
(absolute) value of vi.

For example, suppose L contains a coded series named C1 with values −9, −7, 0, 1 and 2. Then the
generated dummies will be DC1_m7 (coding for C1 = −7), DC1_0 (coding for C1 = 0), and so on.

See also dummify, getinfo.

ceil

Output: same type as input

Argument: x (scalar, series or matrix)

Ceiling function: returns the smallest integer greater than or equal to x. See also floor, int.

cholesky

Output: square matrix

Argument: A (positive definite matrix)

Performs a Cholesky decomposition of A. If A is real it must be symmetric and positive definite;
if so, the result is a lower-triangular matrix L which satisfies A = LL′. If A is complex it must
be Hermitian and positive definite, and the result is a lower-triangular complex matrix such that
A = LLH. Otherwise, the function will return an error.

For the real case, see also psdroot and Lsolve.

chowlin

Output: matrix

Arguments: Y (matrix)

xfac (integer)

X (matrix, optional)

We no longer recommend use of this function; please use tdisagg instead.

Expands the input data, Y, to a higher frequency, using the method of Chow and Lin (1971). It is
assumed that the columns of Y represent data series; the returned matrix has as many columns as
Y and xfac times as many rows. It is also assumed that each low-frequency value should be treated
as the average of xfac high-frequency values.

The xfac value should be 3 for quarterly to monthly, 4 for annual to quarterly or 12 for annual to
monthly. The optional third argument may be used to provide a matrix of covariates at the higher
(target) frequency.

The regressors used by default are a constant and trend. If X is provided, its columns are used
as additional regressors; it is an error if the number of rows in X does not equal xfac times the
number of rows in Y.

cmod

Output: matrix

Argument: C (complex matrix)

Chapter 2. Gretl functions 146

Returns anm×n real matrix holding the complex modulus of each element of them×n complex
matrix C. The modulus of the complex number z = x + yi equals the square root of x2 + y2.

See also abs, carg.

cmult

Output: matrix

Arguments: X (matrix)

Y (matrix)

This is a legacy function, predating gretl’s native support for complex matrices.

Complex multiplication. The two arguments must have the same number of rows, n, and either one
or two columns. The first column contains the real part and the second (if present) the imaginary
part. The return value is an n × 2 matrix, or, if the result has no imaginary part, an n-vector. See
also cdiv.

cnorm

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the cumulative distribution function for a standard normal. See also dnorm, qnorm.

cnumber

Output: scalar

Argument: X (matrix)

Returns the condition number of the n×kmatrix X, as defined in Belsley et al. (1980). If the columns
of X are mutually orthogonal the condition number of X is unity. Conversely, a large value of the
condition number is an indicator of multicollinearity; “large” is often taken to mean 50 or greater
(sometimes 30 or greater).

The steps in the calculation are: (1) form a matrix Z whose columns are the columns of X divided
by their respective Euclidean norms; (2) form Z′Z and obtain its eigenvalues; and (3) compute the
square root of the ratio of the largest to the smallest eigenvalue.

See also rcond.

cnameget

Output: string or array of strings

Arguments: M (matrix)

col (integer, optional)

If the col argument is given, retrieves the name for column col of matrix M. If M has no column
names attached the value returned is an empty string; if col is out of bounds for the given matrix
an error is flagged.

If no second argument is given, retrieves an array of strings holding the column names from M, or
an empty array if M does not have column names attached.

Example:

matrix A = { 11, 23, 13 ; 54, 15, 46 }
cnameset(A, "Col_A Col_B Col_C")
string name = cnameget(A, 3)

Chapter 2. Gretl functions 147

print name

See also cnameset.

cnameset

Output: scalar

Arguments: M (matrix)

S (array of strings or list)

Attaches names to the columns of the T × k matrix M. If S is a named list, the names are taken
from the names of the listed series; the list must have k members. If S is an array of strings, it
should contain k elements. A single string is also acceptable as the second argument; in that case
it should contain k space-separated substrings. As a special case, passing an empty string as the
second argument has the effect of removing any existing column names.

The nominal return value is 0 on successful completion; in case of failure an error is flagged. See
also rnameset.

Example:

matrix M = {1, 2; 2, 1; 4, 1}
strings S = array(2)
S[1] = "Col1"
S[2] = "Col2"
cnameset(M, S)
print M

cols

Output: integer

Argument: X (matrix)

Returns the number of columns of X. See also mshape, rows, unvech, vec, vech.

commute

Output: matrix

Arguments: A (matrix)

m (integer)

n (integer, optional)

post (integer, optional)

add_id (integer, optional)

Returns the matrix A premultiplied by the commutation matrix Km,n (using an algorithm that is
more efficient than explicit multiplication). Each column of A is assumed to come from a vec
operation on a mxn matrix. In particular,

commute(vec(B), rows(B), cols(B))

gives vec(B′). In order to compute the commutation matrix proper, just apply the function to an
appropriately sized identity matrix. For example:

Chapter 2. Gretl functions 148

K_32 = commute(I(6), 3, 2)

The optional argument n defaults to m. If the optional argument post is non-zero, then post-
multiplication is performed instead of pre-multiplication; the optional Boolean switch add_id will
premultiply A by I +Km,n instead of Km,n.

complex

Output: complex matrix

Arguments: A (scalar or matrix)

B (scalar or matrix, optional)

Returns a complex matrix, where A is taken to supply the real part and B the imaginary part. If A
is m×n and B is a scalar the result is m×n with a constant imaginary part—and similarly in the
converse case but with a constant real part. If both arguments are matrices they must be of the
same dimensions. If the second argument is omitted the imaginary part defaults to zero. See also
cswitch.

conj

Output: complex matrix

Argument: C (complex matrix)

Returns an m × n complex matrix holding the complex conjugate of each element of the m × n
complex matrix C. The conjugate of the complex number z = x + yi equals x − yi.
See also carg, abs.

contains

Output: same type as input

Arguments: x (scalar, series or matrix)

S (matrix)

Provides a means of determining whether the numerical object x contains any of the elements of S,
a matrix which plays the role of a set.

The return value is an object of the same size as x containing 1s in positions where a value of x
matches any element of S and zeros elsewhere. For example, the code

matrix A = mshape(seq(1,9), 3, 3)
matrix C = contains(A, {1, 5, 9})

gives

A (3 x 3)

1 4 7
2 5 8
3 6 9

C (3 x 3)

1 0 0
0 1 0

Chapter 2. Gretl functions 149

0 0 1

This function may be particularly useful when x is a series that contains a fine-grained encoding
for a qualitative characteristic, and you wish to reduce this to a smaller number of categories. You
can pack into S a set of values to be consolidated, and obtain a dummy variable with value 1 for
observations matching this set, 0 otherwise.

Since S serves as a set, for greatest efficiency it should be a vector with no repeated values, however
an arbitrary matrix is accepted.

conv2d

Output: matrix

Arguments: A (matrix)

B (matrix)

Computes the 2-dimensional convolution of the matrices A and B. If A is r × c and B ism×n then
the returned matrix will have r +m− 1 rows and c +n− 1 columns.

The 2-D convolution of A and B is defined as

Ci,j =
r∑
k=1

c∑
l=1

Ak,lBi−k+1,j−l+1,

where the summations include just those values of k and l for which the subscripts of B are within
bounds.

See also fft, filter.

cquad

Output: matrix

Argument: Z (matrix)

Given an m × n complex matrix Z, returns an m × n real matrix holding the quadrance of the
elements of Z. The quadrance of the complex number z = a + bi is a2 + b2. It therefore equals
the squared modulus of z and also equals z multiplied by its complex conjugate, but the direct
calculation carried out by cquad is considerably faster than either of the alternative approaches.

corr

Output: scalar

Arguments: y1 (series or vector)

y2 (series or vector)

Computes the correlation coefficient between y1 and y2. The arguments should be either two series,
or two vectors of the same length. See also cov, mcov, mcorr, npcorr.

corresp

Output: scalar

Arguments: a (series or vector)

b (series or vector)

On the basis of a cross-tabulation of a and b, returns an integer code indicating the sort of corre-
spondence between the two variables, as follows.

Chapter 2. Gretl functions 150

• Code = 2: there’s a 1-to-1 relationship.

• Code = 1: there’s a 1-to-n relationship (a “nests” b, can be interpreted as a function of b in the
mathematical sense).

• Code = −1: there’s an n-to-1 relationship (b “nests” a, can be interpreted as a function of a).

• Code = 0: there’s no relationship.

Note that these codes are based solely on the sample values of the two arguments. In case b is
the square of a, for example, the result will differ depending on whether a contains some pairs of
values that differ only by sign (code = −1), or not (code = 2).

One possible use case is to check whether two discrete series encode the same information. For
example, the following:

open grunfeld.gdt
c = corresp($unit, firm)

gives c = 2, indicating that the series firm is in fact a unique identifier for the cross-sectional units
in this panel dataset.

See also mxtab.

corrgm

Output: matrix

Arguments: x (series, matrix or list)

p (integer)

y (series or vector, optional)

If only the first two arguments are given, computes the correlogram for x for lags 1 to p. Let k
represent the number of elements in x (1 if x is a series, the number of columns if x is a matrix, or
the number of list-members if x is a list). The return value is a matrix with p rows and 2k columns,
the first k columns holding the respective autocorrelations and the remainder the respective partial
autocorrelations.

If a third argument is given, this function computes the cross-correlogram for each of the k ele-
ments in x and y, from lead p to lag p. The returned matrix has 2p + 1 rows and k columns. If x is
series or list and y is a vector, the vector must have just as many rows as there are observations in
the current sample range.

cos

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the cosine of x. See also sin, tan, atan.

cosh

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the hyperbolic cosine of x.

coshx = e
x + e−x

2

Chapter 2. Gretl functions 151

See also acosh, sinh, tanh.

cov

Output: scalar

Arguments: y1 (series or vector)

y2 (series or vector)

Returns the covariance between y1 and y2. The arguments should be either two series, or two
vectors of the same length. See also corr, mcov, mcorr.

critical

Output: same type as input

Arguments: c (character)

\dots {} (see below)

p (scalar, series or matrix)

Examples: c1 = critical(t, 20, 0.025)

c2 = critical(F, 4, 48, 0.05)

Critical value calculator. Returns x such that P(X > x) = p, where the distribution X is determined
by the character c. Between the arguments c and p, zero or more additional scalar arguments are
required to specify the parameters of the distribution, as follows.

Distribution c Arg 2 Arg 3

Standard normal z, n or N – –

Student’s t (central) t degrees of freedom –

Chi square c, x or X degrees of freedom –

Snedecor’s F f or F df (num.) df (den.)

Binomial b or B p n
Poisson p or P λ –

Laplace l or L mean scale

Standardized GED E shape –

See also cdf, invcdf, pvalue.

cswitch

Output: matrix

Arguments: A (matrix)

mode (scalar)

Reinterprets a real matrix as holding complex values or vice versa. The precise action depends on
mode (which must have value 1, 2, 3 or 4) as follows:

mode 1: A must be a real matrix with an even number of columns. Returns a complex matrix
with half as many columns, the odd-numbered columns of A supplying the real parts and the
even-numbered columns the imaginary parts.

mode 2: Performs the inverse operation of mode 1. A must be a complex matrix and the return
value is a real matrix with twice as many columns as A.

mode 3: A must be a real matrix with an even number of rows. Returns a complex matrix with half
as many rows, the odd-numbered rows of A supplying the real parts and the even-numbered rows
the imaginary parts.

Chapter 2. Gretl functions 152

mode 4: Performs the inverse operation of mode 3. A must be a complex matrix and the return
value is a real matrix with twice as many rows as A.

See also complex.

ctrans

Output: complex matrix

Argument: C (complex matrix)

Returns an n ×m complex matrix holding the conjugate transpose of the m × n complex matrix
C. The ’ (prime) operator also performs conjugate transposition for complex matrices. The transp
function can be used on complex matrices but it performs “straight” transposition (not conjugated).

cum

Output: same type as input

Argument: x (series or matrix)

Cumulates x. When x is a series, produces a series yt =
∑t
s=m xs ; the starting point of the sum-

mation, m, is the first non-missing observation of the currently selected sample. If any missing
values are encountered in x, subsequent values of y will be set to missing. When x is a matrix, its
elements are cumulated by columns.

In the case of panel data cumulation is in the time dimension, starting anew for each panel unit.

If you want cumulation to ignore missing values (that is, to treat them as if they were zeros), you
can apply misszero to the argument, as in

series cx = cum(misszero(x))

See also diff.

curl

Output: integer

Argument: &b (reference to bundle)

Provides a somewhat flexible means of obtaining a text buffer containing data from an internet
server, using libcurl. On input the bundle b must contain a string named URL which gives the full
address of the resource on the target host. Other optional elements are as follows.

• “header”: a string specifying an HTTP header to be sent to the host.

• “postdata”: a string holding data to be sent to the host.

The header and postdata fields are intended for use with an HTTP POST request; if postdata
is present the POST method is implicit, otherwise the GET method is implicit. (But note that for
straightforward GET requests readfile offers a simpler interface.)

One other optional bundle element is recognized: if a scalar named include is present and has
a non-zero value, this is taken as a request to include the header received from the host with the
output body.

On completion of the request, the text received from the server is added to the bundle under the
key “output”.

If an error occurs in formulating the request (for example there’s no URL on input) the function
fails, otherwise it returns 0 if the request succeeds or non-zero if it fails, in which case the error

Chapter 2. Gretl functions 153

message from the curl library is added to the bundle under the key “errmsg”. Note, however, that
“success” in this sense does not necessarily mean you got the data you wanted; all it means is that
some response was received from the server. You must check the content of the output buffer
(which may in fact be a message such as “Page not found”).

Here is an example of use: downloading some data from the US Bureau of Labor Statistics site,
which requires sending a JSON query. Note the use of sprintf to embed double-quotes in the POST
data.

bundle req
req.URL = "http://api.bls.gov/publicAPI/v1/timeseries/data/"
req.include = 1
req.header = "Content-Type: application/json"
string s = sprintf("{\"seriesid\":[\"LEU0254555900\"]}")
req.postdata = s
err = curl(&req)
if err == 0

s = req.output
string line
loop while getline(s, &line)

printf "%s\n", line
endloop

endif

See also the functions jsonget and xmlget for means of processing JSON and XML data received,
respectively.

dayspan

Output: integer

Arguments: ed1 (integer)

ed2 (integer)

weeklen (integer)

Returns the number of (relevant) days between the epoch days ed1 and ed2, inclusive. The weeklen,
which must equal 5, 6 or 7, gives the number of days in the week that should be counted (a value
of 6 omits Sundays, and a value of 5 omits both Saturdays and Sundays).

To obtain epoch days from the more familiar form of dates, see epochday. Related: see smplspan.

dec2bin

Output: matrix

Argument: x (matrix)

This function returns the binary representation of the numbers contained in the column vector x,
by storing each binary digit into a column of the returned matrix, which always has 32 columns.
Each element of x must be an integer between 0 and 232−1. Otherwise, an error is flagged.

Note that the least significant bit comes in the first column. So column 1 corresponds to 20, column
2 to 21, and so on. For example, the expression

matrix B = dec2bin(5)

produces a row vector full of zeros except for positions 1 and 3.

The bin2dec function performs the inverse transformation.

Chapter 2. Gretl functions 154

defarray

Output: see below

Argument: . . . (see below)

Enables the definition of an array variable in extenso, by providing one or more elements. In using
this function you must specify a type (in plural form) for the array: strings, matrices, bundles
or lists. Each of the arguments must evaluate to an object of the specified type. On successful
completion, the return value is an array of n elements, where n is the number of arguments.

strings S = defarray("foo", "bar", "baz")
matrices M = defarray(I(3), X’X, A*B, P[1:])

See also array.

defbundle

Output: bundle

Argument: . . . (see below)

Enables the initialization of a bundle variable in extenso, by providing zero or more pairs of the form
key, member. If we count the arguments from 1, every odd-numbered argument must evaluate to
a string (key) and every even-numbered argument must evaluate to an object of a type that can be
included in a bundle.

A couple of simple examples:

bundle b1 = defbundle("s", "Sample string", "m", I(3))
bundle b2 = defbundle("yn", normal(), "x", 5)

The first example creates a bundle with members a string and a matrix; the second, a bundle with
a series member and a scalar member. Note that you cannot specify a type for each argument
when using this function, so you must accept the “natural” type of the argument in question. If
you wanted to add a series with constant value 5 to a bundle named b1 it would be necessary to do
something like the following (after declaring b1):

series b1.s5 = 5

If no arguments are given to this function it is equivalent to creating an empty bundle (or to emp-
tying an existing bundle of its content), as could also be done via

bundle b = null

Variant syntax

Two alternative forms of syntax are available for defining bundles. In each case the keyword
defbundle is replaced by a single underscore. In the first variant the comma-separated argu-
ments take the form key=value, where the key is taken to be a literal string and does not require
quotation. Here is an example:

bundle b = _(x=5, strval="some string", m=I(3))

Chapter 2. Gretl functions 155

This form is particularly convenient for constructing an anonymous bundle on the fly as a function
argument, as in

b = regls(ys, LX, _(lfrac=0.35, stdize=0))

where the regls function takes an optional bundle argument holding various parameters.

The second variant is designed for the case where you wish to pack several pre-existing named
objects into a bundle: you just give their names, unquoted:

bundle b = _(x, y, z)

Here the object x is copied into the bundle under the key “x”, and similarly for y and z.

These alternative forms involve less typing than the full defbundle() version and are likely to be
more convenient in many cases, but note that they are less flexible. Only the full version can handle
keys given as string variables rather than literal strings.

deflist

Output: list

Argument: . . . (see below)

Defines a list (of named series), given one or more suitable arguments. Each argument must be a
named series (given by name or integer ID number), an existing named list, or an expression which
evaluates to a list (including a vector which can be interpreted as a set of series ID numbers).

One point to note: this function simply concatenates its arguments to produce the list that it
returns. If the intent is that the return value does not contain duplicates (does not reference any
given series more than once), it is up to the caller to ensure that requirement is satisfied.

deseas

Output: series

Arguments: x (series)

opts (bundle, optional)

The primary purpose of this function is to produce a deseasonalized version of the (quarterly
or monthly) input series x, using X-13ARIMA-SEATS; it is available only if X-13ARIMA-SEATS is
installed. If the second, optional argument is omitted, seasonal adjustment is carried out with all
X-13ARIMA options at their default values (fully automatic procedure). When opts is supplied, it
may contain any of the following option specifications.

• verbose: what to print? 0 = nothing (the default); 1 = confirmation of the options selected; 2
= confirmation of options plus the output from X-13ARIMA.

• seats: 1 to use the SEATS algorithm in place of the default X11 algorithm for seasonal ad-
justment, or 0.

• airline: 1 to use the “airline” ARIMA model specification (0,1,1)(0,1,1) in place of the default
automatic model selection, or 0.

• arima: can be used to impose a chosen ARIMA specification, in the form of a 6-vector holding
small non-negative integers. These are given the (p,d,q,P,D,Q) interpretation, in traditional
time-series notation: the first three terms represent the non-seasonal AR, Integration and MA
orders, and the last three the seasonal counterparts. If both airline and arima are given,
arima takes precedence.

Chapter 2. Gretl functions 156

• outliers: enable detection and correction for outliers (choices 1 through 7), or 0 (the default)
to omit this feature. The three available outlier types with their numerical codes are: 1 =
additive outlier (ao), 2 = level shift (ls), 4 = temporary change (tc). To combine options you
add the codes, for example 1 + 2 + 4 = 7 to activate all three. Note that the choice 3 = 1 + 2
(ao and ls) is the default within X-13ARIMA-SEATS, and is selected via the outlier tickbox in
gretl’s dialog window for seasonal adjustment via X13.

• critical: a positive scalar, the critical value for defining outliers, the default being auto-
matic, dependent on the sample size. Relevant only when outliers is specified.

• logtrans: should the input series be put in log form? 0 = no, 1 = yes, 2 = automatically
selected (the default). Note that it is not recommended to pass the input series in log form; if
you want the log to be used, pass the “raw” level but specify logtrans=1.

• trading_days: should trading-day effects be included? 0 = no, 1 = yes, 2 = automatic (the
default).

• working_days: a simpler version of trading_days with a single distinction between week-
days and weekends rather than individual day effects. 0 = no (the default), 1 = yes, 2 =
automatic. Use only one of trading_days and working_days.

• easter: 1 to allow for an easter effect, as a supplement to either trading_days or working_days,
or 0 (the default).

• output: a string to select the type of the output series, "sa" for deseasonalized (the default),
"trend" for the estimated trend, or "irreg" for the irregular component.

• save_spc: boolean flag, default 0; see below.

Augmented results

In some cases one may wish to obtain all three of the results available from X-13ARIMA via a
single call to deseas. This is supported as follows. Pass the opts bundle in pointer form, and
give the string "all" under the output key. The direct return value is then the seasonally adjusted
series, but on successful completion opts will contain a matrix named results with three columns:
seasonally adjusted, trend and irregular. Here’s an illustration (where the direct return value is
discarded).

bundle b = _(output="all")
deseas(y, &b)
series y_dseas = b.results[,1]
series y_trend = b.results[,2]
series y_irreg = b.results[,3]

Saving the X-13ARIMA specification

The save_spc flag can be used to save the content of the X-13ARIMA input file written by gretl. The
options bundle should be passed in pointer form and the specification (as a string) can be found un-
der the key x13a_spc. The following code illustrates saving this to file under the name myspec.spc
in the user’s working directory. (Note that the .spc extension is required by X-13ARIMA.)

bundle b = _(save_spc=1)
deseas(y, &b)
outfile myspec.spc

print b.x13a_spc
end outfile

Chapter 2. Gretl functions 157

det

Output: scalar

Argument: A (square matrix)

Returns the determinant of A, computed via the LU factorization. If what you actually want is the
log determinant you should call ldet instead. See also rcond, cnumber.

diag

Output: matrix

Argument: X (matrix)

Returns the principal diagonal of X in a column vector. Note: if X is an m×n matrix, the number
of elements of the output vector is min(m, n). See also tr.

diagcat

Output: matrix

Arguments: A (matrix)

B (matrix)

Returns the direct sum of A and B, that is a matrix holding A in its north-west corner and B in its
south-east corner. If both A and B are square, the resulting matrix is block-diagonal.

diff

Output: same type as input

Argument: y (series, matrix or list)

Computes first differences. If y is a series, or a list of series, starting values are set to NA. If y is a
matrix, differencing is done by columns and starting values are set to 0.

When a list is returned, the individual variables are automatically named according to the template
d_ varname where varname is the name of the original series. The name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus constructed.

See also cum, ldiff, sdiff.

digamma

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the digamma (or Psi) function of x, that is d
dx log Γ(x).

See also lngamma, trigamma.

distance

Output: matrix

Arguments: X (matrix)

metric (string, optional)

Y (matrix, optional)

Computes distances between points on a metric that can be euclidean (the default), manhattan,
hamming, chebyshev, cosine or mahalanobis. The string identifying the metric can be given as an

Chapter 2. Gretl functions 158

unambiguous truncation. The additional metrics correlation, standardized Euclidean are supported
via simple transformations of the inputs; see below.

Each row of the m×n matrix X is treated as a point in an n-dimensional space; in an econometric
context this is likely to represent a single observation comprising the values of n variables.

Standard cases

This section applies to all metrics except the Mahalanobis distance, for which the syntax is slightly
different (see below).

If Y is not given, the return value is a column vector of length m(m − 1)/2 comprising the non-
redundant subset of all pairwise distances between the m points (rows of X). Given such a vector
named d, the full symmetric matrix of inter-point distances (with zeros on the principal diagonal)
can be constructed via

D = unvech(d, 0)

since d is akin to the vech of D, with diagonal elements omitted. The optional second argument to
unvech says that the diagonal should be filled with zeros.

If Y is given, it must be a p ×n matrix, each row of which is again treated as a point in n-space. In
this case the return value is an m × p matrix whose i, j element holds the distance between row i
of X and row j of Y.

To obtain the distances from a given reference point (for example, the centroid) to each of n data-
points, give Y as a single row.

Definitions of the supported metrics

• euclidean: the square root of the sum of squared deviations in each of the dimensions.

• manhattan: the sum of the absolute deviations in each of the dimensions.

• hamming: the proportion of the dimensions in which the deviation is non-zero (so bounded
by 0 and 1).

• chebyshev: the greatest absolute deviation in any dimension.

• cosine: 1 minus the cosine of the angle between the “points”, considered as vectors.

Mahalanobis distance

Mahalanobis distances are defined as the Euclidean distances between the points in question (rows
of X) and a given centroid, scaled by the inverse of a covariance matrix. In the simplest case the
centroid is constituted by the sample means of the variables (columns of X) and the covariance
matrix is their sample covariance.

These can be obtained by supplying as second argument the string “mahalanobis” or any unam-
biguous abbreviation, as in

dmahal = distance(X, "mahal")

In this case the third argument Y is not supported, and the return value is a column vector of length
m with the Mahalanobis distances from the centroid of X (that is, its sample mean). In practice, the
output matrix in this case is the same you get by executing the mahal command on a list of series
corresponding to the columns of X.

To obtain Mahalanobis distances using a different centroid, mu, and/or inverse covariance matrix,
ICV, the following syntax can be used:

Chapter 2. Gretl functions 159

dmahal = distance(X*cholesky(ICV), "euc", mu)

Other metrics

Standardized Euclidean distances and correlation distances can be obtained as follows:

standardized euclidean
dseu = distance(stdize(X), "eu")
correlation (based on cosine)
dcor = distance(stdize(X’, -1)’, "cos")

dnorm

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the density of the standard normal distribution at x. To get the density for a non-standard
normal distribution at x, pass the z-score of x to the dnorm function and multiply the result by the
Jacobian of the z transformation, namely 1 over σ , as illustrated below:

mu = 100
sigma = 5
x = 109
fx = (1/sigma) * dnorm((x-mu)/sigma)

See also cnorm, qnorm.

dropcoll

Output: list

Arguments: X (list)

epsilon (scalar, optional)

Returns a list with the same elements as X, but for the collinear series. Therefore, if all the series
in X are linearly independent, the output list is just a copy of X.

The algorithm uses the QR decomposition (Householder transformation), so it is subject to finite
precision error. In order to gauge the sensitivity of the algorithm, a second optional parameter
epsilon may be specified to make the collinearity test more or less strict, as desired. The default
value for epsilon is 1.0e-8. Setting epsilon to a larger value increases the probability of a series to
be dropped.

Example:

nulldata 20
set seed 9876
series foo = normal()
series bar = normal()
series foobar = foo + bar
list X = foo bar foobar
list Y = dropcoll(X)
list print X
list print Y
set epsilon to a ridiculously small value
list Y = dropcoll(X, 1.0e-30)

Chapter 2. Gretl functions 160

list print Y

produces

? list print X
foo bar foobar
? list print Y
foo bar
? list Y = dropcoll(X, 1.0e-30)
Replaced list Y
? list print Y
foo bar foobar

dsort

Output: same type as input

Argument: x (series, vector or strings array)

Sorts x in descending order, skipping observations with missing values when x is a series. See also
sort, values.

dummify

Output: list

Arguments: x (series)

omitval (scalar, optional)

The argument x should be a discrete series. This function creates a set of dummy variables coding
for the distinct values in the series. By default the smallest value is taken as the omitted category
and is not explicitly represented.

The optional second argument represents the value of x which should be treated as the omitted
category. The effect when a single argument is given is equivalent to dummify(x, min(x)). To
produce a full set of dummies, with no omitted category, use dummify(x, NA).

The generated variables are automatically named according to the template Dvarname_i where
varname is the name of the original series and i is a 1-based index. The original portion of the
name is truncated if necessary, and may be adjusted in case of non-uniqueness in the set of names
thus constructed.

easterday

Output: same type as input

Argument: y (scalar, series or matrix)

Given the year in argument y, returns the date of Easter on the Gregorian calendar as month +
day/100. For example, in 2014 the date of Easter was April 20, which is represented under this
convention as 4.2. (Note that April 2 would be returned as 4.02.) The following code shows how
month and day can be extracted from the return value.

scalar e = easterday(2014)
scalar m = floor(e)
scalar d = round(100*(e-m))

Chapter 2. Gretl functions 161

ecdf

Output: matrix

Argument: y (series or vector)

Calculates the empirical CDF of y. This is returned in a matrix with two columns: the first holds
the sorted unique values of y and the second holds the cumulative relative frequency,

F(y) = 1
n

n∑
i=1

I(yi ≤ y)

where n is total number of observations and I() denotes the indicator function.

eigen

Output: matrix

Arguments: A (square matrix)

&V (reference to matrix, or null)

&W (reference to matrix, or null)

Computes the eigenvalues, and optionally the right and/or left eigenvectors, of the n×n matrix A,
which may be real or complex. The eigenvalues are returned in a complex column vector. To obtain
the norm of the eigenvalues, you can use the abs function, which accepts complex arguments.

If you wish to retrieve the right eigenvectors (as an n× n complex matrix), supply the name of an
existing matrix, preceded by & to indicate the “address” of the matrix in question, as the second
argument. Otherwise this argument can be omitted.

To retrieve the left eigenvectors (again, as a complex matrix), supply a matrix-address as the third
argument. Note that if you want the left eigenvectors but not the right ones, you should use the
keyword null as a placeholder for the second argument.

See also eigensym, eigsolve, svd.

eigengen

Output: matrix

Arguments: A (square matrix)

&U (reference to matrix, or null)

This is a legacy function, predating gretl’s native support for complex matrices. It should not be used
in newly written hansl scripts. Use eigen instead.

Computes the eigenvalues, and optionally the right eigenvectors, of the n × n matrix A. If all
the eigenvalues are real an n × 1 matrix is returned; otherwise the result is an n × 2 matrix, the
first column holding the real components and the second column the imaginary components. The
eigenvalues are not guaranteed to be sorted in any particular order.

The second argument must be either the name of an existing matrix preceded by & (to indicate the
“address” of the matrix in question), in which case an auxiliary result is written to that matrix, or
the keyword null, in which case the auxiliary result is not produced.

If a non-null second argument is given, the specified matrix will be over-written with the auxiliary
result. (It is not required that the existing matrix be of the right dimensions to receive the result.)
The output is organized as follows:

• If the i-th eigenvalue is real, the i-th column of U will contain the corresponding eigenvector;

• If the i-th eigenvalue is complex, the i-th column of U will contain the real part of the cor-
responding eigenvector and the next column the imaginary part. The eigenvector for the
conjugate eigenvalue is the conjugate of the eigenvector.

Chapter 2. Gretl functions 162

In other words, the eigenvectors are stored in the same order as the eigenvalues, but the real
eigenvectors occupy one column, whereas complex eigenvectors take two (the real part comes first);
the total number of columns is still n, because the conjugate eigenvector is skipped.

See also eigensym, eigsolve, qrdecomp, svd.

eigensym

Output: matrix

Arguments: A (symmetric matrix)

&U (reference to matrix, or null)

Works mostly as eigen except that the argument A must be symmetric (in which case less calcu-
lation is required), and the eigenvalues are returned in ascending order. If you want to get the
eigenvalues in descending order (and have the eigenvectors reordered correspondingly) you can do
the following:

matrix U
e = eigensym(A, &U)
Tmp = msortby((-e’ | U)’,1)’
e = -Tmp[1,]’
U = Tmp[2:,]
now largest to smallest eigenvalues
print e U

Note: if you’re interested in the eigen-decomposition of a matrix of the form X′X it’s preferable to
compute the argument via the prime operator X’X rather than using the more general syntax X’*X.
The former expression uses a specialized algorithm which offers greater computational efficiency
as well as ensuring that the result is exactly symmetric.

eigsolve

Output: matrix

Arguments: A (symmetric matrix)

B (symmetric matrix)

&U (reference to matrix, or null)

Solves the generalized eigenvalue problem |A − λB| = 0, where both A and B are symmetric and
B is positive definite. The eigenvalues are returned directly, arranged in ascending order. If the
optional third argument is given it should be the name of an existing matrix preceded by &; in that
case the generalized eigenvectors are written to the named matrix.

epochday

Output: scalar or series

Arguments: year (scalar or series)

month (scalar or series)

day (scalar or series)

Returns the number of the day in the current epoch specified by year, month and day. The epoch
day equals 1 for the first of January in the year 1 AD on the proleptic Gregorian calendar; it stood
at 733786 on 2010-01-01. If any of the arguments are given as series the value returned is a series,
otherwise it is a scalar.

By default the year, month and day values are assumed to be given relative to the Gregorian calen-
dar, but if the year is a negative value the interpretation switches to the Julian calendar.

Chapter 2. Gretl functions 163

An alternative call is also supported: if a single argument is given, it is taken to be a date (or series
of dates) in ISO 8601 “basic” numeric format, YYYYMMDD. So the following two calls produce the
same result, namely 700115.

eval epochday(1917, 11, 7)
eval epochday(19171107)

For the inverse function, see isodate and also (for the Julian calendar) juldate. For another means
of converting dates to epoch days see strpday.

errmsg

Output: string

Argument: errno (integer)

Retrieves the gretl error message associated with errno. See also $error.

errorif

Output: scalar

Arguments: condition (boolean)

msg (string)

Applicable only in the context of a user-defined function, or within an mpi block. If condition
evaluates as non-zero, it causes execution of the current function to terminate with an error con-
dition flagged; the msg argument is then printed as part of the message shown to the caller of the
function in question.

The return value from this function (1) is purely nominal.

exists

Output: integer

Argument: name (string)

Returns non-zero if name, which should be valid as a gretl identifier, names a currently defined
object, be it a scalar, a series, a matrix, list, string, bundle or array; otherwise returns 0.

Intended usage is for the case where a user-defined function has an optional parameter with a null
default. The function writer can use exists(), passing the parameter name, to check whether or
not the caller supplied an argument. But please note, lists are an exception in this respect: if a
list parameter has a null default and the caller doesn’t supply an argument, the function gets an
empty list rather than no list; therefore exists will always return non-zero. To check for emptiness
of a list argument, use nelem.

For related checks, see typeof and inbundle.

exp

Output: same type as input

Argument: x (scalar, series or matrix)

Returns ex . Note that in case of matrix input the function acts element by element. For the matrix
exponential function, see mexp.

Chapter 2. Gretl functions 164

fcstats

Output: matrix

Arguments: y (series or vector)

f (series, list or matrix)

U2 (boolean, optional)

Produces a matrix holding several statistics which serve to evaluate f as a forecast of the observed
data y.

If f is a series or vector the output is a column vector; if f is a list with kmembers or a T ×kmatrix
the output has k columns, each of which holds statistics for the corresponding element (series or
column) of the input as a forecast of y.

In all cases the “vertical” dimension of the input (for a series or list the length of the current sample
range, for a matrix the number of rows) must match across the two arguments.

The rows of the returned matrix are as follows:

1 Mean Error (ME)
2 Root Mean Squared Error (RMSE)
3 Mean Absolute Error (MAE)
4 Mean Percentage Error (MPE)
5 Mean Absolute Percentage Error (MAPE)
6 Theil’s U (U1 or U2)
7 Bias proportion, UM
8 Regression proportion, UR
9 Disturbance proportion, UD

The variant of Theil’s U shown by default depends on the nature of the data: if they are known to
be time series then U2 is shown, otherwise U1 is produced. But this choice can be forced via the
optional trailing argument: give a non-zero value to force U2, or zero to force U1.

For details on the calculation of these statistics, and the interpretation of the U values, please see
chapter 35 of the Gretl User’s Guide.

fdjac

Output: matrix

Arguments: b (column vector)

fcall (function call)

h (scalar, optional)

Calculates a numerical approximation to the Jacobian associated with the n-vector b and the trans-
formation function specified by the argument fcall. The function call should take b as its first
argument (either straight or in pointer form), followed by any additional arguments that may be
needed, and it should return an m × 1 matrix. On successful completion fdjac returns an m × n
matrix holding the Jacobian.

The optional third argument can be used to set the step size h used in the approximation mecha-
nism (see below); if this argument is omitted the step size is determined automatically.

Here is an example of usage:

matrix J = fdjac(theta, myfunc(&theta, X))

The function can use three different methods: simple forward-difference, bilateral difference or
4-nodes Richardson extrapolation. Respectively:

Chapter 2. Gretl functions 165

J0 =
f(x + h)− f(x)

h

J1 =
f(x + h)− f(x − h)

2h

J2 =
8(f (x + h)− f(x − h))− (f (x + 2h)− f(x − 2h))

12h

The three alternatives above provide, generally, a trade-off between accuracy and speed. You can
choose among methods via the set command: specify a value of 0, 1 or 2 for the fdjac_quality
variable. The default is 0.

For more details and examples chapter 37 of the Gretl User’s Guide.

See also BFGSmax, numhess, set.

feval

Output: see below

Arguments: funcname (string)

. . . (see below)

Primarily useful for writers of functions. The first argument should be the name of a function; the
remaining arguments will be passed to the specified function. This permits treating the function
identified by funcname as itself a variable. The return value is whatever the named function returns
given the specified arguments.

The example below illustrates some possible uses.

function scalar utility (scalar c, scalar sigma)
return (c^(1-sigma)-1)/(1-sigma)

end function

strings S = defarray("log", "utility")

call a 1-argument built-in function
x = feval(S[1], 2.5)
call a user-defined function
x = feval(S[2], 5, 0.5)
a 2-argument built-in function
func = "zeros"
m = feval(func, 5-2, sqrt(4))
print m
a 3-argument built-in
x = feval("monthlen", 12, 1980, 5)

There’s a weak analogy between feval and genseries: both functions render variable a syntactic
element that is usually fixed at the time a script is composed.

See also fevalb.

fevalb

Output: see below

Arguments: funcname (string)

b (bundle)

Chapter 2. Gretl functions 166

This is a variant of feval which meets a case that may be encountered by function writers, where the
number and types of the arguments to be passed to the named function are not known in advance.
Instead of the arguments being passed individually, they are passed as members of the bundle
argument b.

Since the order of the members in a gretl bundle is indeterminate, some mechanism is required
to ensure that they are passed to the function in question in the right order. This is automatically
ensured if the lexicographic order of the keys in the bundle gives the argument order. For examples,
the keys could be arg1, arg2 and so on (or arg01, arg02 and so on in the unlikely event that the
function takes more than nine arguments). Alternatively, the bundle may contain an array of strings
under the reserved key arglist. This array must hold exactly the keys in b, except for arglist
itself, in the desired order.

The examples below illustrate both approaches, as applied to the monthlen function.

using lexicographic order
bundle b = _(arg1=12, arg2=1980, arg3=5)
n = feval("monthlen", b)

using arglist
bundle b = _(month=12, year=1980, wkdays=5)
b.arglist = defarray("month", "year", "wkdays")
n = feval("monthlen", b)

See also feval.

fevd

Output: matrix

Arguments: target (integer)

shock (integer)

sys (bundle, optional)

This function provides a more flexible alternative to the accessor $fevd for obtaining a forecast
error variance decomposition (FEVD) matrix following estimation of a VAR or VECM. Without the
final optional argument, it is available only when the last model estimated was a VAR or VECM.
Alternatively, information on such a system can be stored in a bundle via the $system accessor and
subsequently passed to fevd.

The target and shock arguments take the form of 1-based indices of the endogenous variables in
the system, with 0 taken to mean “all”. The following code fragment illustrates usage. In the first
example the matrix fe1 holds the shares of the FEVD for y1 due to each of y1, y2 and y3 (the
rows therefore summing to 1). In the second, fe2 holds the contribution of y2 to the forecast error
variance of all three variables (so the rows do not sum to 1). In the third case the return value is a
column vector showing the “own share” of the FEVD for y1.

var 4 y1 y2 y3
bundle vb = $system
matrix fe1 = fevd(1, 0, vb)
matrix fe2 = fevd(0, 2, vb)
matrix fe3 = fevd(1, 1, vb)

The number of periods (rows) over which the decomposition is traced is determined automatically
based on the frequency of the data, but this can be overridden via the horizon argument to the set
command, as in set horizon 10.

See also irf.

Chapter 2. Gretl functions 167

fft

Output: matrix

Argument: X (matrix)

Discrete Fourier transform. The input matrix X may be real or complex. The output is a complex
matrix of the same dimensions as X.

Should it be necessary to compute the Fourier transform on several vectors with the same number
of elements, it is more efficient to group them into a matrix rather than invoking fft for each
vector separately. See also ffti.

ffti

Output: matrix

Argument: X (matrix)

Inverse discrete Fourier transform. It is assumed that X contains n complex column vectors. A
matrix with n columns is returned.

Should it be necessary to compute the inverse Fourier transform on several vectors with the same
number of elements, it is more efficient to group them into a matrix rather than invoking ffti for
each vector separately. See also fft.

filter

Output: see below

Arguments: x (series or matrix)

a (scalar or vector, optional)

b (scalar or vector, optional)

y0 (scalar, optional)

x0 (scalar or vector, optional)

Computes an ARMA-like filtering of the argument x. The transformation can be written as

yt =
q∑
i=0

aixt−i +
p∑
i=1

biyt−i

If argument x is a series, the result will be itself a series. Otherwise, if x is a matrix with T rows and
k columns, the result will be a matrix of the same size, in which the filtering is performed column
by column.

The two arguments a and b are optional. They may be scalars, vectors or the keyword null.

If a is a scalar, this is used as a0 and implies q = 0; if it is a vector of q + 1 elements, they contain
the coefficients from a0 to aq. If a is null or omitted, this is equivalent to setting a0 = 1 and q = 0.

If b is a scalar, this is used as b1 and implies p = 1; if it is a vector of p elements, they contain the
coefficients from b1 to bp. If b is null or omitted, this is equivalent to setting B(L) = 1.

The optional scalar argument y0 is taken to represent all values of y prior to the beginning of
sample (used only when p > 0). If omitted, it is understood to be 0. Similarly, the optional argument
x0 may be used to specify one or more pre-sample values of x, information that is relevant only
when q > 0. Otherwise pre-sample values of x are assumed to be zero.

See also bkfilt, bwfilt, fracdiff, hpfilt, movavg, varsimul.

Example:

Chapter 2. Gretl functions 168

nulldata 5
y = filter(index, 0.5, -0.9, 1)
print index y --byobs
x = seq(1,5)’ ~ (1 | zeros(4,1))
w = filter(x, 0.5, -0.9, 1)
print x w

produces

index y

1 1 -0.40000
2 2 1.36000
3 3 0.27600
4 4 1.75160
5 5 0.92356

x (5 x 2)

1 1
2 0
3 0
4 0
5 0

w (5 x 2)

-0.40000 -0.40000
1.3600 0.36000
0.27600 -0.32400
1.7516 0.29160
0.92356 -0.26244

firstobs

Output: integer

Arguments: y (series)

insample (boolean, optional)

Returns the 1-based index of the first non-missing observation for the series y. By default the
whole data range is examined, so if subsampling is in effect the value returned may be smaller than
the accessor $t1. But if a non-zero value is given for insample only the current sample range is
considered. See also lastobs.

fixname

Output: string

Arguments: rawname (string)

underscore (boolean, optional)

Primarily intended for use in connection with the join command. Returns the result of converting
rawname to a valid gretl identifier, which must start with a letter, contain nothing but (ASCII)
letters, digits and the underscore character, and must not exceed 31 characters. The rules used in
conversion are:

1. Skip any leading non-letters.

Chapter 2. Gretl functions 169

2. Until the 31-character limit is reached or the input is exhausted: transcribe “legal” characters;
skip “illegal” characters apart from spaces; and replace one or more consecutive spaces with an
underscore, unless the previous character transcribed is an underscore in which case space is
skipped.

If you are confident that the input is not too long (and hence subject to truncation), you may wish to
have sequences of one or more illegal characters replaced with an underscore rather than just being
deleted; this may produce a more readable identifier. To get this effect, supply a nonzero value for
the optional second argument. But this is not advisable in the context of the join command, since
the automatically “fixed” name will not use underscores in this way.

flatten

Output: see below

Arguments: A (array of matrices or strings)

alt (integer or string, optional)

“Flattens” either an array of matrices into a single matrix or an array of strings into a single string.

Matrices

In the matrix case, the way the matrices in A are joined together depends on the the alt argument,
which should have value 0 (horizontal), 1 (vertical) or 2 (“vec-wise”). The best way to explain the
difference between the three alternatives is by example: the code

X = {1,3,5; 2,4,6}
A = defarray(X, X+6)
U = flatten(A,0) # = A[1] ~ A[2]
V = flatten(A,1) # = A[1] | A[2]
W = flatten(A,2) # = vec(A[1]) ~ vec(A[2])

produces the following three matrices:

U (2 x 6)

1 3 5 7 9 11
2 4 6 8 10 12

V (4 x 3)

1 3 5
2 4 6
7 9 11
8 10 12

W (6 x 2)

1 7
2 8
3 9
4 10
5 11
6 12

An error is flagged if the matrices in the array are not conformable for the operation. See msplitby
for the inverse operation.

Chapter 2. Gretl functions 170

Strings

In the string case the result holds the strings in A, arranged one per line by default. If a non-zero
numerical value is given for alt the strings are separated by spaces rather than newlines, but an
alternative usage of alt is supported: you may give a specific string to use as the separator. The
inverse function for the string case is strsplit.

floor

Output: same type as input

Argument: y (scalar, series or matrix)

Returns the greatest integer less than or equal to x. Note: int and floor differ in their effect for
negative arguments: int(-3.5) gives −3, while floor(-3.5) gives −4.

fracdiff

Output: series

Arguments: y (series)

d (scalar)

∆dyt = yt − ∞∑
i=1

ψiyt−i

where

ψi =
Γ(i− d)Γ(−d)Γ(i+ 1)

Note that in theory fractional differentiation is an infinitely long filter. In practice, presample values
of yt are assumed to be zero.

A negative value of d can be given, in which case fractional integration is performed.

fzero

Output: scalar

Arguments: fcall (function call)

init (scalar or vector, optional)

toler (scalar, optional)

Attempts to find a single root of a continuous (typically nonlinear) function f—that is, a value of
the scalar variable x such that f (x) = 0. The fcall argument should provide a call to the function in
question; fcall may include an arbitrary number of arguments but the first one must be the scalar
playing the role of x. On successful completion the value of the root is returned.

The method used is that of Ridders (1979). This requires an initial bracket {x0, x1} such that both
x values lie in the domain of the function and the respective function values are of opposite sign.
Best results are likely to be obtained if the user can supply, via the second argument, a 2-vector
holding suitable end-points for the bracket. Failing that, one can supply a single scalar value and
fzero will try to find a counterpart. If the second argument is omitted, x0 is initialized to a small
positive value and we search for a suitable x1.

The optional toler argument can be used to adjust the maximum acceptable absolute difference of
f (x) from zero, the default being 1.0e−14.

By default this function operates silently, but the progress of the iterative method can be exposed
by executing the command “set max_verbose on” before calling fzero.

Some simple examples follow.

Chapter 2. Gretl functions 171

Approximate pi by finding a zero for sin() in the
bracket 2.8 to 3.2
x = fzero(sin(x), {2.8, 3.2})
printf "\nx = %.12f vs pi = %.12f\n\n", x, $pi

Approximate the ’Omega constant’ starting from x = 0.5
function scalar f(scalar x)

return log(x) + x
end function
x = fzero(f(x), 0.5)
printf "x = %.12f f(x) = %.15f\n", x, f(x)

gammafun

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the gamma function of x.

See also bincoeff and lngamma.

genseries

Output: scalar

Arguments: varname (string)

rhs (series)

Provides the script writer with a convenient means of generating series whose names are not known
in advance, and/or creating a series and appending it to a list in a single operation.

The first argument gives the name of the series to create (or modify); this can be a string literal, a
string variable, or an expression that evaluates to a string. The second argument, rhs (“right-hand
side”), defines the source series: this can be the name of an existing series or an expression that
evaluates to a series, as would appear to the right of the equals sign when defining a series in the
usual way.

The return value from this function is the ID number of the series in the dataset, a value suitable
for inclusion in a list (or −1 on failure).

For example, suppose you want to add n random normal series to the dataset and put them all into
a named list. The following will do the job:

nulldata 10
list Normals = null
scalar n = 3
loop i = 1 .. n

Normals += genseries(sprintf("norm%d", i), normal())
endloop

On completion Normals will contain the series norm1, norm2 and norm3 .

Those who find genseries useful may also like to explore feval.

Chapter 2. Gretl functions 172

geoplot

Output: none

Arguments: mapfile (string)

payload (series, optional)

options (bundle, optional)

Calls for production of a map, when suitable geographical data are present. In most cases the
mapfile argument should be given as $mapfile, an accessor that retrieves the name of the relevant
GeoJSON file or ESRI shapefile. The optional payload argument is used to give the name of a series
with which to colorize the regions of the map. And the final bundle argument enables you to set
numerous options.

See the geoplot documentation, geoplot.pdf, for full details and examples. This explains all the
settings configurable via the options argument.

getenv

Output: string

Argument: s (string)

If an environment variable by the name of s is defined, returns the string value of that variable,
otherwise returns an empty string. See also ngetenv.

getinfo

Output: bundle

Argument: y (series)

Returns information on the specified series, which may be given by name or ID number. The
returned bundle contains all the attributes which can be set via the setinfo command. It also
contains additional information relevant for series that have been created as transformations of
primary data (lags, logs, etc.): this includes the gretl command word for the transformation under
the key “transform” and the name of the associated primary series under “parent”. For lagged
series, the specific lag number can be found under the key “lag”.

Here is an example of usage:

open data9-7
lags QNC
bundle b = getinfo(QNC_2)
print b

On executing the above we see:

has_string_table = 0
lag = 2
parent = QNC
name = QNC_2
graph_name =
coded = 0
discrete = 0
transform = lags
description = = QNC(t - 2)

To test whether series 5 in a dataset is a lagged term one can do this sort of thing:

Chapter 2. Gretl functions 173

if getinfo(5).lag != 0
printf "series 5 is a lag of %s\n", getinfo(5).parent

endif

Note that the dot notation to access bundle members can be used even when the bundle is “anony-
mous” (not saved under its own name).

getkeys

Output: array of strings

Argument: b (bundle)

Returns an array of strings holding the keys identifying the contents of b. If the bundle is empty
an empty array is returned.

getline

Output: scalar

Arguments: source (string)

&target (reference to string)

This function is used to read successive lines from source, which should be a named string variable.
On each call a line from the source is written to target (which must also be a named string variable,
given in pointer form), with the newline character stripped off. The valued returned is 1 if there
was anything to be read (including blank lines), 0 if the source has been exhausted.

Here is an example in which the content of a text file is broken into lines:

string s = readfile("data.txt")
string line
scalar i = 1
loop while getline(s, &line)

printf "line %d = ’%s’\n", i++, line
endloop

In this example we can be sure that the source is exhausted when the loop terminates. If the source
might not be exhausted you should follow your regular call(s) to getline with a “clean up” call, in
which target is replaced by null (or omitted altogether) as in

getline(s, &line) # get a single line
getline(s, null) # clean up

Note that although the reading position advances at each call to getline, source is not modified
by this function, only target.

ghk

Output: matrix

Arguments: C (matrix)

A (matrix)

B (matrix)

U (matrix)

&dP (reference to matrix, or null)

Chapter 2. Gretl functions 174

Computes the GHK (Geweke, Hajivassiliou, Keane) approximation to the multivariate normal distri-
bution function; see for example Geweke (1991). The value returned is an n× 1 vector of probabil-
ities.

The argument C (m×m) should give the Cholesky factor (lower triangular) of the covariance matrix
of m normal variates. The arguments A and B should both be n ×m, giving respectively the
lower and upper bounds applying to the variates at each of n observations. Where variates are
unbounded, this should be indicated using the built-in constant $huge or its negative.

The matrix U should be m × r , with r the number of pseudo-random draws from the uniform
distribution; suitable functions for creating U are muniform and halton.

We illustrate below with a relatively simple case where the multivariate probabilities can be calcu-
lated analytically. The series P and Q should be numerically very similar to one another, P being the
“true” probability and Q its GHK approximation:

nulldata 20
series inf1 = -2*uniform()
series sup1 = 2*uniform()
series inf2 = -2*uniform()
series sup2 = 2*uniform()

scalar rho = 0.25
matrix V = {1, rho; rho, 1}

series P = cdf(D, rho, inf1, inf2) - cdf(D, rho, sup1, inf2) \
- cdf(D, rho, inf1, sup2) + cdf(D, rho, sup1, sup2)

C = cholesky(V)
U = halton(2, 100)

series Q = ghk(C, {inf1, inf2}, {sup1, sup2}, U)

The optional dP argument can be used to retrieve the n × k matrix of analytical derivatives of
the probabilities, where k equals 2m + m(m + 1)/2. The first m columns hold the derivatives with
respect to the lower bounds, the nextm those with respect to the upper bounds, and the remainder
the derivatives with respect to the unique elements of the C matrix in “vech” order.

gini

Output: scalar

Argument: y (series or vector)

Returns Gini’s inequality index for the (non-negative) series or vector y. A Gini value of zero indi-
cates perfect equality. The maximum Gini value for a series with nmembers is (n − 1)/n, occurring
when only one member has a positive value; a Gini of 1.0 is therefore the limit approached by a
large series with maximal inequality.

ginv

Output: matrix

Arguments: A (matrix)

tol (scalar, optional)

Returns A+, the Moore–Penrose or generalized inverse of the r × c matrix A, computed via the
singular value decomposition.

Chapter 2. Gretl functions 175

The result of this operation depends on the number of singular values of A that are found to be
numerically 0. The tol optional parameter can be used for tweaking this aspect. Singular values
are considered to be 0 if they are less than mÖtolÖs, where m is the greater of r and c and s
is the largest singular value. If the second argument is omitted tol is set to machine epsilon (see
$macheps). In some cases, you may want to set tol to a larger value (eg 1.0e-9) in order to avoid
overestimating the rank of A, which may lead to numerically unstable results.

This matrix has the properties

AA+A = A
A+AA+ = A+

Moreover, the products A+A and AA+ are symmetric by construction.

See also inv, svd.

GSSmax

Output: scalar

Arguments: &b (reference to matrix)

f (function call)

toler (scalar, optional)

One-dimensional maximization via the Golden Section Search method. The matrix b should be a 3-
vector. On input the first element is ignored while the second and third elements set the lower and
upper bounds on the search. The fncall argument should specify a call to a function that returns
the value of the maximand; element 1 of b, which will hold the current value of the adjustable
parameter when the function is called, should be given as its first argument; any other required
arguments may then follow. The function in question should be unimodal (should have no local
maxima other than the global maximum) over the stipulated range, or GSS is not sure to find the
maximum.

On successful completion GSSmax returns the optimum value of the maximand, while b holds the
optimal parameter value along with the limits of its bracket.

The optional third argument may be used to set the tolerance for convergence, that is, the maximum
acceptable width of the final bracket for the parameter. If this argument is not given a value of
0.0001 is used.

If the object is in fact minimization, either the function call should return the negative of the
criterion or alternatively GSSmax may be called under the alias GSSmin.

Here is a simple example of usage:

function scalar trigfunc (scalar theta)
return 4 * sin(theta) * (1 + cos(theta))

end function

matrix m = {0, 0, $pi/2}
eval GSSmax(&m, trigfunc(m[1]))
printf "\n%10.7f", m

GSSmin

Output: scalar

An alias for GSSmax; if called under this name the function acts as a minimizer.

Chapter 2. Gretl functions 176

halton

Output: matrix

Arguments: m (integer)

r (integer)

offset (integer, optional)

Returns anm×r matrix containingm Halton sequences of length r . The sequences are constructed
using the first m primes. By default the first 10 elements of each sequence are discarded, but this
figure can be adjusted via the optional offset argument, which should be a non-negative integer.
See Halton and Smith (1964).

hdprod

Output: matrix

Arguments: X (matrix)

Y (matrix, optional)

Horizontal direct product. The two arguments must have the same number of rows, r . The return
value is a matrix with r rows, in which the i-th row is the Kronecker product of the corresponding
rows of X and Y. If Y is omitted, the “shorthand” syntax applies (see below).

If X is an r × k matrix, Y is an r ×m matrix and Z is the result matrix of the horizontal direct
product of X times Y , then Z will have r rows and k ·m columns; moreover,

Zin = XijYil

where n = (j − 1)m+ l.
This operation is called “horizontal direct product” in conformity to its implementation in the
GAUSS programming language. Its equivalent in standard matrix algebra would be called the row-
wise Khatri-Rao product, or “face-splitting” product in the signal processing literature.

Example: the code

A = {1,2,3; 4,5,6}
B = {0,1; -1,1}
C = hdprod(A, B)

produces the following matrix:

0 1 0 2 0 3
-4 4 -5 5 -6 6

Shorthand syntax

If X and Y are the same matrix, then each row of the result is the vectorization of a symmetric
matrix. In these cases, the second argument may be omitted; however, the returned matrix will
only contain the non-redundant columns, and will therefore have k(k+1)/2 columns. For example,

A = {1,2,3; 4,5,6}
C = hdprod(A)

produces

Chapter 2. Gretl functions 177

1 2 3 4 6 9
16 20 24 25 30 36

Note that the i-th row of C is vech(aia′i), where ai is the i-th row of A.

When using the shorthand syntax with complex matrices, the implicit second argument will be the
conjugate of the first one, so as to make each row of the result the symmetric vectorization of a
Hermitian matrix.

hfdiff

Output: list

Arguments: hfvars (list)

multiplier (scalar)

Given a MIDAS list, produces a list of the same length holding high-frequency first differences. The
second argument is optional and defaults to unity: it can be used to multiply the differences by
some constant.

hfldiff

Output: list

Arguments: hfvars (list)

multiplier (scalar)

Given a MIDAS list, produces a list of the same length holding high-frequency log-differences. The
second argument is optional and defaults to unity: it can be used to multiply the differences by
some constant, for example one might give a value of 100 to produce (approximate) percentage
changes.

hflags

Output: list

Arguments: minlag (integer)

maxlag (integer)

hfvars (list)

Given a MIDAS list, hfvars, produces a list holding high-frequency lags minlag to maxlag. Use
positive values for actual lags, negative for leads. For example, if minlag is −3 and maxlag is 5
then the returned list will hold 9 series: 3 leads, the contemporary value, and 5 lags.

Note that high-frequency lag 0 corresponds to the first high frequency period within a low fre-
quency period, for example the first month of a quarter or the first day of a month.

hflist

Output: list

Arguments: x (vector)

m (integer)

prefix (string)

Produces from the vector x a MIDAS list of m series, where m is the ratio of the frequency of
observation for the variable in x to the base frequency of the current dataset. The value of m must
be at least 3 and the length of x must be m times the length of the current sample range.

Chapter 2. Gretl functions 178

The names of the series in the returned list are constructed from the given prefix (which must be
an ASCII string of 24 characters or less, and valid as a gretl identifier), plus one or more digits
representing the sub-period of the observation. An error is flagged if any of these names duplicate
names of existing objects.

hpfilt

Output: series

Arguments: y (series)

lambda (scalar, optional)

one-sided (boolean, optional)

Returns the cycle component from application of the Hodrick–Prescott filter to series y. If the
smoothing parameter, lambda, is not supplied then a data-based default is used, namely 100 times
the square of the periodicity (100 for annual data, 1600 for quarterly data, and so on).

By default the filter is the usual two-sided version, but if the optional third argument is given with
a non-zero value a one-sided variant (with no look-ahead) is computed in the manner of Stock and
Watson (1999).

The most common use of the HP filter is detrending, but if it’s the trend you are interested in that
is easily obtained by subtraction, as in

series hptrend = y - hpfilt(y)

See also bkfilt, bwfilt.

hyp2f1

Output: scalar or matrix

Arguments: a (scalar)

b (scalar)

c (scalar)

x (scalar or matrix)

Returns the Gauss hypergeometric function 2F1(a, b; c;z) =
∑∞
n=0

(a)n(b)n
(c)n

zn
n! . for real argument x.

If x is a scalar, the return value will be scalar; otherwise, it will be a matrix the same size as x.

I

Output: matrix

Arguments: n (integer)

m (integer, optional)

If m is omitted, returns an identity matrix of order n. Otherwise returns an n×m matrix with ones
on the main diagonal and zeros elsewhere.

Im

Output: matrix

Argument: C (complex matrix)

Returns a real matrix of the same dimensions as C, holding the imaginary part of the input matrix.
See also Re.

Chapter 2. Gretl functions 179

imaxc

Output: row vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the row indices of the maxima of the columns of X. For columns containing NAs the result
is also set to NA, unless the optional argument skip_na is nonzero, in which case the index for the
maximum valid entry will be returned.

See also imaxr, iminc, maxc.

imaxr

Output: column vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the column indices of the maxima of the columns of X. For rows containing NAs the result
is also set to NA, unless the optional argument skip_na is nonzero, in which case the index for the
maximum valid entry will be returned.

See also imaxc, iminr, maxr.

imhof

Output: scalar

Arguments: M (matrix)

x (scalar)

Computes Prob(u′Au < x) for a quadratic form in standard normal variates, u, using the proce-
dure developed by Imhof (1961).

If the first argument, M, is a square matrix it is taken to specify A, otherwise if it’s a column vector
it is taken to be the precomputed eigenvalues of A, otherwise an error is flagged.

See also pvalue.

iminc

Output: row vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the row indices of the minima of the columns of X. For columns containing NAs the result
is also set to NA, unless the optional argument skip_na is nonzero, in which case the index for the
minimum valid entry will be returned.

See also iminr, imaxc, minc.

iminr

Output: column vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the column indices of the minima of the rows of X. For rows containing NAs the result is
also set to NA, unless the optional argument skip_na is nonzero, in which case the index for the
minimum valid entry will be returned.

Chapter 2. Gretl functions 180

See also iminc, imaxr, minr.

inbundle

Output: integer

Arguments: b (bundle)

key (string)

Checks whether bundle b contains a data-item with name key. The value returned is an integer code
for the type of the item: 0 for no match, 1 for scalar, 2 for series, 3 for matrix, 4 for string, 5 for
bundle, 6 for array and 7 for list. The function typestr may be used to get the string corresponding
to this code.

infnorm

Output: scalar

Argument: X (matrix)

Returns the ∞-norm of the r × c matrix X, namely,

∥X∥∞ = max
i

c∑
j=1

|Xij|

See also onenorm.

inlist

Output: integer

Arguments: L (list)

y (series)

Returns the (1-based) position of y in list L, or 0 if y is not present in L.

The second argument may be given as the name of a series or alternatively as an integer ID number.
If you know that a series of a certain name (say foo) exists, then you can call this function as, for
example,

pos = inlist(L, foo)

Here you are, in effect, asking “Give me the position of series foo in list L (or 0 if it is not included
in L).” However, if you are unsure whether a series of the given name exists, you should place the
name in quotes:

pos = inlist(L, "foo")

In this case you are asking, “If there’s a series named foo in L give me its position, otherwise return
0.”

instring

Output: integer

Arguments: s1 (string)

s2 (string)

ign_case (boolean, optional)

Chapter 2. Gretl functions 181

This is a boolean relative of strstr: it returns 1 if s1 contains s2, 0 otherwise. So the conditional
expression

if instring("cattle", "cat")

is logically equivalent to, but more efficient than,

if strlen(strstr("cattle", "cat")) > 0

If the optional argument ign_case is nonzero, the search is case-insensitive. For example,

instring("Cattle", "cat")

returns 0, but

instring("Cattle", "cat", 1)

returns 1.

instrings

Output: see below

Arguments: S (array of strings)

test (string)

simple (boolean, optional)

Checks the elements of the strings array S for equality with test. By default, returns a column
vector of length equal to the number of matches, holding the positions of the matches within the
array—or an empty matrix in case of no matches.

Example:

strings S = defarray("A", "B", "C", "B")
eval instrings(S, "B")
2
4

If a non-zero value is given for the optional simple argument, the return value is a scalar: 1 if test
is found in S, 0 otherwise. In this case the implementation is able to take a shortcut, so it’s more
efficient if you just want a boolean answer.

int

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the integer part of x, truncating the fractional part, or NA if the result cannot be represented
as a 32-bit signed integer (does not lie in the interval [−2147483648, 2147483647]).

Note: int and floor differ in their effect for negative arguments: int(-3.5) gives −3, while
floor(-3.5) gives −4. See also ceil, floor, round.

Chapter 2. Gretl functions 182

interpol

Output: series

Argument: x (series)

Returns a series in which missing values in x are imputed via linear interpolation, for time series
data or in the time dimension of a panel dataset. Extrapolation is not performed; missing values
are replaced only if they are both preceded and followed by valid observations.

inv

Output: matrix

Argument: A (square matrix)

Returns the inverse of A. If A is singular or not square, an error message is produced and nothing
is returned. Note that gretl checks automatically the structure of A and uses the most efficient
numerical procedure to perform the inversion.

The matrix types gretl checks for are: identity; diagonal; symmetric and positive definite; symmetric
but not positive definite; and triangular.

Note: it makes sense to use this function only if you plan to use the inverse of A more than once.
If you just need to compute an expression of the form A−1B, you’ll be much better off using the
“division” operators \ and /. See chapter 17 of the Gretl User’s Guide for details.

See also ginv, invpd.

invcdf

Output: same type as input

Arguments: d (string)

\dots {} (see below)

u (scalar, series or matrix)

Inverse cumulative distribution function calculator. For a continuous distribution, returns x such
that P(X ≤ x) = u, for u in the interval 0 to 1. For a discrete distribution (Binomial or Poisson),
returns the smallest x such that P(X ≤ x) ≥ u.

The distribution of X is determined by the string d. Between the arguments d and u, zero or more
additional scalar arguments are required to specify the parameters of the distribution, as follows.

Distribution d Arg 2 Arg 3 Arg 4

Standard normal z, n or N – – –

Gamma g or G shape scale –

Student’s t (central) t degrees of freedom – –

Chi square c, x or X degrees of freedom – –

Snedecor’s F f or F df (num.) df (den.) –

Binomial b or B p n –

Poisson p or P λ – –

Laplace l or L mean scale –

Standardized GED E shape – –

Non-central χ2 ncX df non-centrality –

Non-central F ncF df (num.) df (den.) non-centrality

Non-central t nct df non-centrality –

See also cdf, critical, pvalue.

Chapter 2. Gretl functions 183

invmills

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the inverse Mills ratio at x, that is the ratio between the standard normal density and the
complement to the standard normal distribution function, both evaluated at x.

This function uses a dedicated algorithm which yields greater accuracy compared to calculation
using dnorm and cnorm, but the difference between the two methods is appreciable only for very
large negative values of x.

See also cdf, cnorm, dnorm.

invpd

Output: square matrix

Arguments: A (positive definite matrix)

&logdet (reference to scalar, optional)

Returns the inverse of the symmetric, positive definite matrix A. This function is slightly faster
than inv for large matrices, since no check for symmetry is performed; for that reason it should be
used with care.

If the optional argument &logdet is present, the corresponding scalar will contain on successful
exit the log determinant of A. This may be convenient to have in some cases, for example in the
context of the evaluation of a Gaussian log-likelihood, because the log determinant is a by-product
of the inversion algorithm and retrieving it via the &logdet argument avoids extra computations.

Note: if you’re interested in the inversion of a matrix of the form X′X, where X is a large matrix, it is
preferable to compute it via the prime operator X’X rather than using the more general syntax X’*X.
The former expression uses a specialized algorithm which has the double advantage of being more
efficient computationally and of ensuring that the result will be free by construction of machine
precision artifacts that may render it numerically non-symmetric.

irf

Output: matrix

Arguments: target (integer)

shock (integer)

alpha (scalar between 0 and 1, optional)

sys (bundle, optional)

Provides estimated impulse response functions pertaining to a VAR or VECM, traced out over a
certain forecast horizon. Without the final optional argument, this function works only when the
last model estimated was a VAR or VECM. Alternatively, information on such a system can be saved
as a bundle via the $system accessor and subsequently passed to irf.

The target and shock arguments take the form of 1-based indices of the endogenous variables in
the system, with 0 taken to mean “all”. The responses (expressed in the units of the target variable)
are to an innovation of one standard deviation in the shock variable. If alpha is given a suitable
positive value the estimates include a 1 − α confidence interval (so, for example, give 0.1 for a 90
percent interval).

The following code fragment illustrates usage. In the first example the matrix ir1 holds the re-
sponses of y1 to innovations in each of y1, y2 and y3 (point estimates only since alpha is omitted).
In the second, ir2 holds the responses of all targets to an innovation in y2, with 90 percent confi-
dence intervals. In this case the returned matrix will have 9 columns: each response path occupies 3

Chapter 2. Gretl functions 184

adjacent columns giving point estimate, lower bound and upper bound. The last example produces
a matrix with 27 columns: 3 per response for each target times each shock.

var 4 y1 y2 y3
matrix ir1 = irf(1, 0)
matrix ir2 = irf(0, 2, 0.1)
matrix ir3 = irf(0, 0, 0.1)

The number of periods (rows) over which the response is traced is determined automatically based
on the frequency of the data, but this can be overridden via the set command, as in set horizon
10.

When confidence intervals are produced they are derived via bootstrapping, with resampling of the
original residuals. It is assumed that the lag order of the VAR or VECM is sufficient to eliminate
serial correlation of the residuals. By default the number of bootstrap replications is 1999, but that
can be adjusted via set, as in

set boot_iters 2999

See also fevd, vma.

irr

Output: scalar

Argument: x (series or vector)

Returns the Internal Rate of Return for x, considered as a sequence of payments (negative) and
receipts (positive). See also npv.

iscomplex

Output: scalar

Argument: name (string)

Tests whether name is the identifier for a complex matrix. The return value is one of the following:

NA: name does not identify a matrix.

0: name identifies a real matrix, composed entirely of regular floating-point numbers (“doubles”, in
C parlance).

1: name identifies a “nominally” complex matrix, composed of numbers with both a real and an
imaginary part, but in which all imaginary parts are zero.

2: the matrix in question holds at least one “genuinely” complex value, with a non-zero imaginary
part.

isconst

Output: integer

Arguments: y (series or vector)

panel-code (integer, optional)

Without the optional second argument, returns 1 if y has a constant value over the current sample
range (or over its entire length if y is a vector), otherwise 0.

Chapter 2. Gretl functions 185

The second argument is accepted only if the current dataset is a panel and y is a series. In that
case a panel-code value of 0 calls for a check for time-invariance, while a value of 1 means check
for cross-sectional invariance (that is, in each time period the value of y is the same for all groups).

If y is a series, missing values are ignored in checking for constancy.

isdiscrete

Output: integer

Argument: name (string)

If name is the identifier for a currently defined series, returns 1 if the series is marked as discrete-
valued, otherwise 0. If name does not identify a series, returns NA.

isdummy

Output: integer

Argument: x (series or vector)

If all the values contained in x are 0 or 1 (or missing), returns the number of ones, otherwise 0.

isnan

Output: same type as input

Argument: x (scalar or matrix)

Given a scalar argument, returns 1 if x is “Not a Number” (NaN), otherwise 0. Given a matrix
argument, returns a matrix of the same dimensions with 1s in positions where the corresponding
element of the input is NaN and 0s elsewhere.

isoconv

Output: integer

Arguments: date (series)

&year (reference to series)

&month (reference to series)

&day (reference to series, optional)

Given a series date holding dates in ISO 8601 “basic” format (YYYYMMDD), this function writes the
year, month and (optionally) day components into the series named by the second and subsequent
arguments. An example call, assuming the series dates contains suitable 8-digit values:

series y, m, d
isoconv(dates, &y, &m, &d)

The nominal return value is 0 on successful completion; in case of failure an error is flagged.

isocountry

Output: same type as input

Arguments: source (string or array of strings)

output (integer, optional)

This function maps between the four designations for countries present in ISO 3166, namely

1. Country name

Chapter 2. Gretl functions 186

2. Alpha-2 code (two uppercase letters)

3. Alpha-3 code (three uppercase letters)

4. Numeric code (3 digits)

Given a country’s designation in one form, the return value is its designation in the form (1 to 4)
selected by the optional output argument or, if this argument is omitted, a default conversion as
follows: when source is a country name the return value is the country’s 2-letter code; otherwise
the return value is the country name. Various valid calls are illustrated below in interactive form.

? eval isocountry("Bolivia")
BO
? eval isocountry("Bolivia", 3)
BOL
? eval isocountry("GB")
United Kingdom of Great Britain and Northern Ireland
? eval isocountry("GB", 3)
GBR
? strings S = defarray("ES", "DE", "SD")
? strings C = isocountry(S)
? print C
Array of strings, length 3
[1] "Spain"
[2] "Germany"
[3] "Sudan"
? matrix m = {4, 840}
? C = isocountry(m)
? print C
Array of strings, length 2
[1] "Afghanistan"
[2] "United States of America"

When source is in form 4 (numeric code) this can be given as a string or array of strings (for
example, “032” for Argentina) or in numeric form. In the latter case source may be given as a series
or vector, though an error will be flagged if any of the numbers are out of the range 0 to 999.

In all cases (even when output form 4 is selected) a string, or array of strings, is returned; if numeric
values are required these may be obtained using atof. If source is not matched by any entry in the
ISO 3166 table the return value is an empty string, in which case a warning is printed.

isodate

Output: see below

Arguments: ed (scalar, series or matrix)

as-string (boolean, optional)

The argument ed is interpreted as an epoch day, which equals 1 for the first of January in the year
1 AD on the proleptic Gregorian calendar. The default return value (of the same type as ed) is an
8-digit number, or a series of such numbers, on the pattern YYYYMMDD (ISO 8601 “basic” format),
giving the Gregorian calendar date corresponding to the epoch day.

If the optional second argument as-string is non-zero, the return value is not numeric but rather
a string on the pattern YYYY-MM-DD (ISO 8601 “extended” format), or a string-valued series if ed
is a series, or an array of strings if ed is a vector. For a more flexible means of obtaining string
representations of epoch days, see strfday.

For the inverse function, see epochday; also see juldate.

Chapter 2. Gretl functions 187

isoweek

Output: see below

Arguments: year (scalar or series)

month (scalar or series)

day (scalar or series)

Returns the ISO 8601 week number corresponding to the date(s) specified by the three arguments,
or NA if the date is invalid. Note that all three arguments must be of the same type, either scalars
(integers) or series.

ISO weeks are numbered from 01 to 53; most years have 52 weeks but on average 71 out of 400
years have 53 weeks. The ISO 8601 definition for week 01 is the week containing the year’s first
Thursday on the Gregorian calendar. For a full account see https://en.wikipedia.org/wiki/
ISO_week_date.

An alternative call is also supported: if a single argument is given, it is taken to be a date (or series
of dates) in ISO 8601 “basic” numeric format, YYYYMMDD. So the following two calls produce the
same result, namely 13.

eval isoweek(2022, 4, 1)
eval isoweek(20220401)

iwishart

Output: matrix

Arguments: S (symmetric matrix)

v (integer)

Given S (a positive definite p × p scale matrix), returns a drawing from the Inverse Wishart distri-
bution with v degrees of freedom, where v must not be smaller than p. The returned matrix is also
p × p. The algorithm of Odell and Feiveson (1966) is used.

jsonget

Output: string

Arguments: buf (string)

path (string)

&nread (reference to scalar, optional)

The argument buf should be a JSON buffer, as may be retrieved from a suitable website via the curl
function, and the path argument should be a JsonPath specification.

This function returns a string representing the data found in the buffer at the specified path. Data
types of double (floating-point), int (integer) and string are supported. In the case of doubles or
ints, their string representation is returned (using the “C” locale for doubles). If the object to which
path refers is an array, the members are printed one per line in the returned string.

By default an error is flagged if path is not matched in the JSON buffer, but this behavior is modified
if you pass the third, optional argument: in that case the argument retrieves a count of the matches
and an empty string is returned if there are none. Example call:

ngot = 0
ret = jsonget(jbuf, "$.some.thing", &ngot)

However, an error is still flagged in case of a malformed query.

https://en.wikipedia.org/wiki/ISO_week_date
https://en.wikipedia.org/wiki/ISO_week_date

Chapter 2. Gretl functions 188

An accurate account of JsonPath syntax can be found at http://goessner.net/articles/JsonPath/.
However, please note that the back-end for jsonget is provided by json-glib, which does not nec-
essarily support all elements of JsonPath. Moreover, the exact functionality of json-glib may dif-
fer depending on the version you have on your system. See https://wiki.gnome.org/Projects/
JsonGlib if you need details.

That said, the following operators should be available to jsonget:

• root node, via the $ character

• recursive descent operator: ..

• wildcard operator: *

• subscript operator: []

• set notation operator, for example [i,j]

• slice operator: [start:end:step]

jsongetb

Output: bundle

Arguments: buf (string)

path (string, optional)

The argument buf should be a JSON buffer, as may be retrieved from a suitable website via the curl
function. The specification and effect of the optional path argument are described below.

The return value is a bundle whose structure basically mirrors that of the input: JSON objects
become gretl bundles and JSON arrays become gretl arrays, each of which can hold strings, bundles
or arrays. JSON “value” nodes become either members of bundles or elements of arrays; in the
latter case numerical values are converted to strings using sprintf. Note that although the JSON
specification allows arrays of mixed type these cannot be handled by jsongetb since gretl arrays
must be of a single type.

The path argument can be used to limit the JSON elements included in the returned bundle. This
is not a “JsonPath” as described in the help for jsonget; it is a simple construct subject to the
following specification.

• path is a slash-separated array of elements where slash (“/”) indicates moving to one level
“deeper” in the JSON tree represented by buf. A leading slash is allowed but not required;
implicitly the path always starts at the root. No extraneous white-space characters should be
included.

• Each slash-separated element must take one of the following forms: (a) a single name, in
which case only a JSON element whose name matches at the given structural level will be
included; or (b) “*” (asterisk), in which case all elements at the given level are included; or (c)
an array of comma-separated names, enclosed in braces (“” and “”), in which case only JSON
elements whose names match one of the given names will be included.

See also the string-oriented jsonget; depending on your purpose one of these functions may be
more helpful than the other.

juldate

Output: see below

Arguments: ed (scalar, series or matrix)

as-string (boolean, optional)

http://goessner.net/articles/JsonPath/
https://wiki.gnome.org/Projects/JsonGlib
https://wiki.gnome.org/Projects/JsonGlib

Chapter 2. Gretl functions 189

This function works just like isodate except that on output the dates are relative to the Julian
calendar rather than the Gregorian.

kdensity

Output: matrix

Arguments: x (series, list or matrix)

scale (scalar, optional)

control (boolean, optional)

Computes a kernel density estimate (or set of estimates) for the argument x, which may be a single
series or vector or a list or matrix with more than column. The returned matrix has k + 1 columns,
where k is the number of elements (series or columns) in x. The first column holds a set of evenly
spaced abscissae and the rest hold the estimated density or densities at each of these points.

The formula used to compute the estimated density at each reference point, x, is

f(x) = (1/nh)
n∑
t−1

k ((x − xt)/h)

where n denotes the number of data points, h is a “bandwidth” parameter, and k() is the kernel
function. The larger the value of the bandwidth parameter, the smoother the estimated density.

The optional scale parameter can be used to adjust the bandwidth relative to the default of 1.0,
which corresponds to the rule of thumb proposed by Silverman (1986), namely

h = 0.9min(s, IQR/1.349)n−1/5

where s denotes the standard deviation of the data and IQR is the inter-quartile range. The control
parameter acts as a boolean: 0 (the default) means that the Gaussian kernel is used; a non-zero
value switches to the Epanechnikov kernel.

A plot of the results may be obtained using the gnuplot command, as illustrated below. Note that
the column containing the abscissae should come last for plotting.

matrix d = kdensity(x)
if x has a single element
gnuplot 2 1 --matrix=d --with-lines --fit=none
if x has two elements
gnuplot 2 3 1 --matrix=d --with-lines --fit=none

kdsmooth

Output: integer

Arguments: &kb (reference to bundle)

MSE (boolean, optional)

Performs disturbance smoothing for a Kalman bundle previously set up by means of ksetup and
returns 0 on successful completion or non-zero if numerical problems are encountered. The return
value should be checked before making using of results.

On successful completion, the smoothed disturbances will be available as kb.smdist.

The optional MSE argument determines the contents of the kb.smdisterr key. If 0 or omitted,
this matrix will contain the unconditional standard errors of the smoothed disturbances, which are
normally used to compute the so-called auxiliary residuals. Otherwise, kb.smdisterr will contain
the estimated root mean square deviations of the auxiliary residuals from their true value.

For more details see chapter 36 of the Gretl User’s Guide.

See also ksetup, kfilter, ksmooth, ksimul.

Chapter 2. Gretl functions 190

kfilter

Output: scalar

Argument: &kb (reference to bundle)

Performs a forward, filtering pass on a Kalman bundle previously set up by means of ksetup and
returns 0 on successful completion or 1 if numerical problems are encountered.

On successful completion, the one-step-ahead prediction errors will be available as kb.prederr
and the sequence of their covariance matrices as kb.pevar. Moreover, the key kb.llt gives access
to a T -vector containing the log-likelihood by observation.

For more details see chapter 36 of the Gretl User’s Guide.

See also kdsmooth, ksetup, ksmooth, ksimul.

kmeier

Output: matrix

Arguments: d (series or vector)

cens (series or vector, optional)

Given a sample of duration data, d, possibly accompanied by a record of censoring status, cens,
computes the Kaplan–Meier nonparametric estimator of the survival function (Kaplan and Meier
(1958)). The returned matrix has three columns holding, respectively, the sorted unique values in
d, the estimated survival function corresponding to the duration value in column 1 and the (large
sample) standard error of the estimator, calculated via the method of Greenwood (1926).

If the cens series is given, the value 0 is taken to indicate an uncensored observation while a value
of 1 indicates a right-censored observation (that is, the period of observation of the individual in
question has ended before the duration or spell has been recorded as terminated). If cens is not
given, it is assumed that all observations are uncensored. (Note: the semantics of cens may be
extended at some point to cover other types of censoring.)

See also naalen.

kpsscrit

Output: matrix

Arguments: T (scalar)

trend (boolean)

Returns a row vector containing critical values at the 10, 5 and 1 percent levels for the KPSS test
for stationarity of a time series. T should give the number of observations and trend should be 1
if the test includes a trend, 0 otherwise.

The critical values given are based on response surfaces estimated in the manner set out by Sephton
(1995). See also the kpss command.

ksetup

Output: bundle

Arguments: Y (series, matrix or list)

Z (scalar or matrix)

T (scalar or matrix)

Q (scalar or matrix)

R (matrix, optional)

Chapter 2. Gretl functions 191

Sets up a Kalman bundle, that is an object which contains all the information needed to define a
linear state space model of the form

yt = Zαt +ut
where Var(u) = R, and state transition equation

αt+1 = Tαt + vt

where Var(v) = Q.

Objects created via this function can be later used via the dedicated functions kfilter for filtering,
ksmooth and kdsmooth for smoothing and ksimul for performing simulations.

The class of models that gretl can handle is in fact much wider than the one implied by the represen-
tation above: it is possible to have time-varying models, models with diffuse priors and exogenous
variable in the measurement equation and models with cross-correlated innovations. For further
details, see chapter 36 of the Gretl User’s Guide.

See also kdsmooth, kfilter, ksmooth, ksimul.

ksimul

Output: matrix

Arguments: &kb (reference to bundle)

U (matrix)

extra (boolean, optional)

Uses a Kalman bundle previously set up by means of ksetup to perform simulation, the distur-
bances being taken from the matrix U. By default the returned matrix (which will have as many
rows as U) contains simulated values of the observable(s), but if a non-zero value is given for ex-
tra the simulated state is also included. In the latter case each row holds the state first, then the
observable(s).

For details see chapter 36 of the Gretl User’s Guide.

See also ksetup, kfilter, ksmooth.

ksmooth

Output: integer

Argument: &kb (reference to bundle)

Performs a fixed-point smoothing (backward) pass on a Kalman bundle previously set up by means
of ksetup and returns 0 on successful completion or non-zero if numerical problems are encoun-
tered. The return value should be checked before making using of results.

On successful completion, the smoothed states will be available as kb.state and the sequence of
their covariance matrices as kb.stvar. For more details see chapter 36 of the Gretl User’s Guide.

See also ksetup, kdsmooth, kfilter, ksimul.

kurtosis

Output: scalar

Argument: x (series)

Returns the excess kurtosis of the series x, skipping any missing observations.

Chapter 2. Gretl functions 192

lags

Output: list or matrix

Arguments: p (scalar or vector)

y (series, list or matrix)

bylag (boolean, optional)

If the first argument is a scalar, generates lags 1 to p of the series y, or if y is a list, of all series
in the list, or if y is a matrix, of all columns in the matrix. If p = 0 and y is a series or list, the
maximum lag defaults to the periodicity of the data; otherwise p must be positive.

If a vector is given as the first argument, the lags generated are those specified in the vector.
Common usage in this case would be to give p as, for example, seq(3,7), hence omitting the first
and second lags. However, it is OK to give a vector with gaps, as in {3,5,7}, although the lags
should always be given in ascending order.

In the case of list output, the generated variables are automatically named according to the template
varname _ i where varname is the name of the original series and i is the specific lag. The original
portion of the name is truncated if necessary, and may be adjusted in case of non-uniqueness in
the set of names thus constructed.

When y is a list, or a matrix with more than one column, and the lag order is greater than 1, the
default ordering of the terms in the return value is by variable: all lags of the first input series or
column followed by all lags of the second, and so on. The optional third argument can be used to
change this: if bylag is non-zero then the terms are ordered by lag: lag 1 of all the input series or
columns, then lag 2 of all the series or columns, and so on.

See also mlag for use with matrices.

lastobs

Output: integer

Arguments: y (series)

insample (boolean, optional)

Returns the 1-based index of the last non-missing observation for the series y. By default the
whole data range is examined, so if subsampling is in effect the value returned may be larger than
the accessor $t2. But if a non-zero value is given for insample only the current sample range is
considered. See also firstobs.

ldet

Output: scalar

Argument: A (square matrix)

Returns the natural log of the determinant of A, computed via the LU factorization. Note that this
is more efficient than calling det and taking the log of the result. Moreover, in some cases ldet is
able to return a valid result even if the determinant of A is numerically “infinite” (exceeds the C
library’s maximum double-precision number). See also rcond, cnumber.

ldiff

Output: same type as input

Argument: y (series or list)

Computes log differences; starting values are set to NA.

When a list is returned, the individual variables are automatically named according to the template
ld_varname where varname is the name of the original series. The name is truncated if necessary,

Chapter 2. Gretl functions 193

and may be adjusted in case of non-uniqueness in the set of names thus constructed.

See also diff, sdiff.

lincomb

Output: series

Arguments: L (list)

b (vector)

Computes a new series as a linear combination of the series in the list L. The coefficients are given
by the vector b, which must have length equal to the number of series in L.

See also wmean.

linearize

Output: series

Argument: x (series)

Depends on having TRAMO installed. Returns a “linearized” version of the input series; that is, a
series in which any missing values are replaced by interpolated values and outliers are adjusted.
TRAMO’s fully automatic mechanism is used; consult the TRAMO documentation for details.

Note that if the input series has no missing values and no values that TRAMO regards as outliers,
this function will return a copy of the original series.

ljungbox

Output: scalar

Arguments: y (series)

p (integer)

Computes the Ljung–Box Q’ statistic for the series y using lag order p, over the currently defined
sample range. The lag order must be greater than or equal to 1 and less than the number of
available observations.

This statistic may be referred to the chi-square distribution with p degrees of freedom as a test of
the null hypothesis that the series y is not serially correlated. See also pvalue.

lngamma

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the log of the gamma function of x.

See also bincoeff and gammafun.

loess

Output: series

Arguments: y (series)

x (series)

d (integer, optional)

q (scalar, optional)

robust (boolean, optional)

Chapter 2. Gretl functions 194

Performs locally-weighted polynomial regression and returns a series holding predicted values of y
for each non-missing value of x. The method is as described by Cleveland (1979).

The optional arguments d and q specify the order of the polynomial in x and the proportion of
the data points to be used in local estimation, respectively. The default values are d = 1 and q =
0.5. The other acceptable values for d are 0 and 2. Setting d = 0 reduces the local regression to a
form of moving average. The value of q must be greater than 0 and cannot exceed 1; larger values
produce a smoother outcome.

If a non-zero value is given for the robust argument the local regressions are iterated twice, with
the weights being modified based on the residuals from the previous iteration so as to give less
influence to outliers.

See also nadarwat, and in addition see chapter 40 of the Gretl User’s Guide for details on nonpara-
metric methods.

log

Output: same type as input

Argument: x (scalar, series, matrix or list)

Returns the natural logarithm of x ; produces NA for non-positive values. Note: ln is an acceptable
alias for log.

When a list is returned, the individual variables are automatically named according to the template
l_varname where varname is the name of the original series. The name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus constructed.

Note that in case of matrix input the function acts element by element. For the matrix logarithm
function, see mlog.

log10

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the base-10 logarithm of x ; produces NA for non-positive values.

log2

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the base-2 logarithm of x ; produces NA for non-positive values.

logistic

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the logistic CDF of the argument x, that is, Λ(x) = 1/(1+e−x). If x is a matrix, the function
is applied element by element.

lpsolve

Output: bundle

Argument: specs (bundle)

Chapter 2. Gretl functions 195

Solves a linear programming problem using the lpsolve library. See gretl-lpsolve.pdf for details
and examples of usage.

lower

Output: square matrix

Argument: A (matrix)

Returns an n×n lower triangular matrix B for which Bij = Aij if i ≥ j, and 0 otherwise.

See also upper.

lrcovar

Output: matrix

Arguments: A (matrix)

demean (boolean, optional)

Returns the long-run variance-covariance matrix of the columns of A. The data are first demeaned
unless the second (optional) argument is set to zero. The kernel type and lag truncation parameter
(window size) can be chosen before calling this function with the HAC-related options that the set
command offers, such as hac_kernel, hac_lag, hac_prewhiten. See also the section on Time
series data and HAC covariance matrices in chapter 22 of the Gretl User’s Guide.

See also lrvar.

lrvar

Output: scalar

Arguments: y (series or vector)

k (integer, optional)

mu (scalar, optional)

Returns the long-run variance of y, calculated using a Bartlett kernel with window size k. If the
second argument is omitted, or given a negative value, the window size defaults to the integer part
of the cube root of the sample size.

In formulae:

ω̂2(k) = 1
T

T−k∑
t=k

 k∑
i=−k

wi(yt − µ)(yt−i − Ȳ)


with

wi = 1− |i|
k+ 1

For the variance calculation, the series y is centered around the optional parameter mu; if this is
omitted or NA, the sample mean is used.

For a multivariate counterpart, see lrcovar.

Lsolve

Output: matrix

Arguments: L (matrix)

B (matrix)

Solves for x in AX = B, where L is the lower triangular Cholesky factor of the positive definite
matrix A, satisfying LL′ = A. Suitable L can be obtained using the cholesky function with A as
argument.

Chapter 2. Gretl functions 196

The following two calculations should produce the same result (up to machine precision), but the
first variant allows for reuse of a precomputed Cholesky factor and so should be substantially faster
if you are solving repeatedly for given A and several values of B. The speed-up will be greater, the
greater the dimension of A.

variant 1
matrix L = cholesky(A)
matrix X = Lsolve(L, B)
variant 2
matrix X = A \ B

mat2list

Output: list

Arguments: X (matrix)

prefix (string, optional)

A convenience function for making a list of series using the columns of a suitable matrix as input.
The row dimension of X must equal either the length of the current dataset or the number of
observations in the current sample range.

The naming of the series in the returned list proceeds as follows. First, if the optional prefix
argument is supplied, the series created from column i of X is named by appending i to the given
string, as in myprefix1, myprefix2 and so on. Otherwise, if X has column names set (see cnameset)
these names are used. Finally, if neither of the above conditions is satisfied, the names are column1,
column2 and so on. Note that this policy may result in overwriting existing series; if you don’t want
that to happen, take charge of naming the columns explicitly via cnameset, or supply prefix.

Here is an illustrative example of usage:

matrix X = mnormal($nobs, 8)
list L = mat2list(X, "xnorm")
or alternatively, if you don’t need X as such
list L = mat2list(mnormal($nobs, 8), "xnorm")

This will add to the dataset eight full-length series named xnorm1, xnorm2 and so on.

max

Output: depends on input

Arguments: x (scalar, series or matrix)

y (scalar, series or matrix, optional)

This function has two primary modes plus a special case.

The first mode is activated if a single argument of type scalar, series or matrix is given: the return
value is a scalar, the maximum valid value “within” the argument: if x is a series, its maximum
value within the current sample range, or if x is a matrix, its greatest element, missing values being
ignored. The case of a scalar argument is supported for the sake of completeness; you just get its
value back.

The second mode is activated if two arguments are given. The arguments x and y must be of the
same type, and must be scalars, series or matrices (and if they are matrices, they must be of the
same dimensions). The return value is an object of the same type as the arguments, holding the
“between” or “cross” maximum or maxima. If the arguments are scalars you get the greater of the
two; if they’re series you get a series holding the greater of the values of the two series at each

Chapter 2. Gretl functions 197

observation in the current sample range; if they’re matrices you get a matrix holding the greater
of their elements in each row and column. For each of the pairwise comparisons if either term is
missing the result is also a missing value.

The special case

This arises if a single list argument is given. The return value is a series, containing at each ob-
servation in the current sample range the greatest of the values of the series in the list at that
observation.

See also min.

maxc

Output: row vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns a row vector containing the maxima of the columns of X. For columns containing NAs
the result is also set to NA, unless the optional argument skip_na is nonzero, in which case the
maximum valid entry will be returned.

See also imaxc, maxr, minc.

maxr

Output: column vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns a column vector containing the maxima of the rows of X. For rows containing NAs the result
is also set to NA, unless the optional argument skip_na is nonzero, in which case the maximum valid
entry will be returned.

See also imaxr, maxc, minr.

mcorr

Output: matrix

Argument: X (matrix)

Computes a (Pearson) correlation matrix treating each column of X as a variable. See also corr, cov,
mcov.

mcov

Output: matrix

Arguments: X (matrix)

dfcorr (integer, optional)

Computes a covariance matrix treating each column of X as a variable. The divisor is n − 1, where
n is the number of rows of X, unless the optional second argument is supplied, in which case n −
dfcorr is used.

See also corr, cov, mcorr.

Chapter 2. Gretl functions 198

mcovg

Output: matrix

Arguments: X (matrix)

u (vector, optional)

w (vector, optional)

p (integer)

Returns the matrix covariogram for a T ×k matrix X (typically containing regressors), an (optional)
T -vector u (typically containing residuals), an (optional) (p+1)-vector of weights w, and a lag order
p, which must be greater than or equal to 0.

The returned matrix is given by
p∑

j=−p

∑
j
w|j|(Xtutut−jX′t−j)

If u is given as null the u terms are omitted, and if w is given as null all the weights are taken to
be 1.0.

For example, the following piece of code

set seed 123
X = mnormal(6,2)
Lag = mlag(X,1)
Lead = mlag(X,-1)
print X Lag Lead
eval X’X
eval mcovg(X, , , 0)
eval X’(X + Lag + Lead)
eval mcovg(X, , , 1)

produces this output:

? print X Lag Lead
X (6 x 2)

-0.76587 -1.0600
-0.43188 0.30687
-0.82656 0.40681
0.39246 0.75479
0.36875 2.5498
0.28855 -0.55251

Lag (6 x 2)

0.0000 0.0000
-0.76587 -1.0600
-0.43188 0.30687
-0.82656 0.40681
0.39246 0.75479
0.36875 2.5498

Lead (6 x 2)

-0.43188 0.30687
-0.82656 0.40681
0.39246 0.75479

Chapter 2. Gretl functions 199

0.36875 2.5498
0.28855 -0.55251
0.0000 0.0000

? eval X’X
1.8295 1.4201
1.4201 8.7596

? eval mcovg(X,,, 0)
1.8295 1.4201
1.4201 8.7596

? eval X’(X + Lag + Lead)
3.0585 2.5603
2.5603 10.004

? eval mcovg(X,,, 1)
3.0585 2.5603
2.5603 10.004

mean

Output: scalar or series

Arguments: x (series or list)

partial (boolean, optional)

If x is a series, returns the (scalar) sample mean, skipping any missing observations.

If x is a list, returns a series y such that yt is the mean of the values of the variables in the list at
observation t. By default the mean is recorded as NA if there are any missing values at t, but if you
pass a non-zero value for partial any non-missing values will be used to form the statistic.

The following example illustrates the working of the function

open denmark.gdt
eval mean(LRM)
list L = dataset
eval mean(L)

The first call will return the scalar mean value (scalar) of the series LRM, and the second one returns
a series.

See also median, sum, max, min, sd, var.

meanc

Output: row vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the means of the columns of X. If a non-zero value is given for the optional second argu-
ment missing values are ignored, otherwise the result is NA for any columns that contain missing
values.

For example, the following piece of code

matrix m = mnormal(5, 2)
m[1,2] = NA

Chapter 2. Gretl functions 200

print m
eval meanc(m)

produces this output:

? print m
m (5 x 2)

-0.098299 nan
1.1829 -1.2817

0.46037 -0.92947
1.4896 -0.91970

0.91918 0.47748

? eval meanc(m)
0.79075 nan

See also meanr, sumc, maxc, minc, sdc, prodc.

meanr

Output: column vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the means of the rows of X. If a non-zero value is given for the optional second argument
missing values are ignored, otherwise the result is NA for any rows that contain missing values. See
also meanc, sumr.

median

Output: scalar or series

Argument: x (series or list)

If x is a series, returns the (scalar) sample median, skipping any missing observations.

If x is a list, returns a series y such that yt is the median of the values of the variables in the list
at observation t, or NA if there are any missing values at t.

The following example illustrates the working of the function

set verbose off
open denmark.gdt
eval median(LRM)
list L = dataset
series m = median(L)

The first call will return the scalar median value (scalar) of the series LRM, and the second one
returns a series.

See also mean, sum, max, min, sd, var.

mexp

Output: square matrix

Argument: A (square matrix)

Chapter 2. Gretl functions 201

Computes the matrix exponential,

eA =
∞∑
k=0

Ak

k!
= I

0!
+ A

1!
+ A

2

2!
+ A

3

3!
+ · · ·

(This series is sure to converge.) If A is a real matrix algorithm used is 11.3.1 from Golub and
Van Loan (1996) is used. If A is complex the algorithm uses eigendecomposition and A must be
diagonalizable.

See also mlog.

mgradient

Output: matrix

Arguments: p (integer)

theta (vector)

type (integer or string)

Analytical derivatives for MIDAS weights. Let k denote the number of elements in the vector of
hyper-parameters, theta. This function returns a p × k matrix holding the gradient of the vector
of weights (as calculated by mweights) with respect to the elements of theta. The first argument
represents the desired lag order and the last argument specifies the type of parameterization. See
mweights for an account of the acceptable type values.

See also midasmult, mlincomb, mweights.

midasmult

Output: matrix

Arguments: mod (bundle)

cumulate (boolean)

v (integer)

Computes MIDAS multipliers. The mod argument must be a bundle containing a MIDAS model, as
the one produced by the midasreg command and accessible via the $model keyword. The function
returns a matrix with the implicit MIDAS multipliers for variable v in its first column and the corre-
sponding standard errors in the second one. If the cumulate argument is nonzero, the multipliers
are cumulated.

Note that the returned matrix is automatically endowed with appropriate row labels, so it is suitable
to be used as the first argument to the modprint command. For example, the code

open gdp_midas.gdt
list dIP = ld_indpro*
smpl 1985:1 ;
midasreg ld_qgdp 0 ; mds(dIP, 0, 6, 2)
matrix ip_m = midasmult($model, 0, 1)
modprint ip_m

produces the following output:

coefficient std. error z p-value

dIP_0 0.343146 0.0957752 3.583 0.0003 ***
dIP_1 0.402547 0.0834904 4.821 1.43e-06 ***
dIP_2 0.176437 0.0673776 2.619 0.0088 ***

Chapter 2. Gretl functions 202

dIP_3 0.0601876 0.0621927 0.9678 0.3332
dIP_4 0.0131263 0.0259137 0.5065 0.6125
dIP_5 0.000965260 0.00346703 0.2784 0.7807
dIP_6 0.00000 0.00000 NA NA

See also mgradient, mweights, mlincomb.

min

Output: depends on input

Arguments: x (scalar, series or matrix)

y (scalar, series or matrix)

Please see the help for max; this function works in exactly the same way except that it returns a
minimum or minima.

minc

Output: row vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the minima of the columns of X. For columns containing NAs the result is also set to NA,
unless the optional argument skip_na is nonzero, in which case the minimum valid entry will be
returned.

See also iminc, maxc, minr.

minr

Output: column vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the minima of the rows of X. For rows containing NAs the result is also set to NA, unless the
optional argument skip_na is nonzero, in which case the minimum valid entry will be returned.

See also iminr, maxr, minc.

missing

Output: same type as input

Argument: x (scalar, series or list)

Returns a binary variable holding 1 if x is NA. If x is a series, the comparison is done element by
element; if x is a list of series, the output is a series with 1 at observations for which at least one
series in the list has a missing value, and 0 otherwise. For example, the following code

nulldata 3
series x = normal()
x[2] = NA
series x_ismiss = missing(x)
print x x_ismiss --byobs

sets a missing value at the second observation of x, and creates a new boolean series x_ismiss which
identifies the missing observation

Chapter 2. Gretl functions 203

y y_ismiss

1 -1.551247 0
2 1
3 -2.244616 0

See also misszero, ok, zeromiss.

misszero

Output: same type as input

Argument: x (scalar, series or matrix)

Converts NAs to zeros. If x is a series or matrix, the conversion is done element by element. For
example, the following code

nulldata 3
series x = normal()
x[2] = NA
y = misszero(x)
print x y --byobs

sets a missing value at the second observation of x, and creates a new series y for which the missing
observation is replaced by zero:

x y

1 0.7355250 0.7355250
2 0.000
3 -0.2465936 -0.2465936

See also missing, ok, zeromiss.

mlag

Output: matrix

Arguments: X (matrix)

p (scalar or vector)

m (scalar, optional)

Shifts up or down the rows of X. If p is a positive scalar, the returned matrix Y has typical element
Yi,j = Xi−p,j for i ≥ p and zero otherwise. In other words, the columns of X are shifted down by p
rows and the first p rows are filled with the value m. If p is a negative number, X is shifted up and
the last rows are filled with the value m. If m is omitted, it is understood to be zero.

If p is a vector the operation described above is carried out for each element in p and the resulting
matrices are joined horizontally. The following code illustrates this usage, for input X with two
columns and input p calling for lags 1 and 2. Missing values are set to NA as opposed to the
default of 0.

matrix X = mnormal(5, 2)
print X
eval mlag(X, {1, 2}, NA)

Chapter 2. Gretl functions 204

m (5 x 2)

1.5953 -0.070740
-0.52713 -0.47669
-2.2056 -0.28112
0.97753 1.4280
0.49654 0.18532

nan nan nan nan
1.5953 -0.070740 nan nan

-0.52713 -0.47669 1.5953 -0.070740
-2.2056 -0.28112 -0.52713 -0.47669
0.97753 1.4280 -2.2056 -0.28112

See also lags.

mlincomb

Output: series

Arguments: hfvars (list)

theta (vector)

type (integer or string)

A convenience MIDAS function which combines lincomb with mweights. Given a list hfvars, it
constructs a series which is a weighted sum of the elements of the list, the weights based on the
vector of hyper-parameters theta and the type of parameterization: see mweights for details. Note
that hflags is generally the best way to create a list suitable as the first argument to this function.

To be explicit, the call

series s = mlincomb(hfvars, theta, 2)

is equivalent to

matrix w = mweights(nelem(hfvars), theta, 2)
series s = lincomb(hfvars, w)

but use of mlincomb saves on some typing and also some CPU cycles.

mlog

Output: square matrix

Argument: A (square matrix)

Computes the matrix logarithm of A. The algorithm employed relies on eigendecomposition, which
requires that A be diagonalizable. See also mexp.

mnormal

Output: matrix

Arguments: r (integer)

c (integer, optional)

Returns a matrix with r rows and c columns, filled with standard normal pseudo-random variates.
If omitted, the number of columns defaults to 1 (column vector). See also normal, muniform.

Chapter 2. Gretl functions 205

mols

Output: matrix

Arguments: Y (matrix)

X (matrix)

&U (reference to matrix, or null)

&V (reference to matrix, or null)

Returns a k × n matrix of parameter estimates obtained by OLS regression of the T × n matrix Y
on the T × k matrix X.

If the third argument is not null, the T×nmatrix U will contain the residuals. If the final argument
is given and is not null then the k × k matrix V will contain (a) the covariance matrix of the
parameter estimates, if Y has just one column, or (b) X′X−1 if Y has multiple columns.

By default, estimates are obtained via Cholesky decomposition, with a fallback to QR decomposition
if the columns of X are highly collinear. The use of SVD can be forced via the command set svd
on.

See also mpols, mrls.

monthlen

Output: same type as input

Arguments: month (scalar or series)

year (scalar or series)

weeklen (integer)

Returns the number of (relevant) days in the specified month in the specified year, on the proleptic
Gregorian calendar. The weeklen argument, which must equal 5, 6 or 7, gives the number of days in
the week that should be counted (a value of 6 omits Sundays, and a value of 5 omits both Saturdays
and Sundays).

The return value is a scalar if both month and year are scalars, otherwise a series.

For example, if you have a monthly dataset open, the call

series wd = monthlen($obsminor, $obsmajor, 5)

will return a series containing the number of working days for each month in the sample.

movavg

Output: series

Arguments: x (series)

p (scalar)

control (integer, optional)

y0 (scalar, optional)

Depending on the value of the parameter p, returns either a simple or an exponentially weighted
moving average of the input series x.

If p > 1, a simple p-term moving average is computed, that is, 1
p
∑p−1
i=0 xt−i. If a non-zero value

is supplied for the optional control parameter the MA is centered, otherwise it is “trailing”. The
optional y0 argument is ignored.

If 0 < p < 1, an exponential moving average is computed:

yt = pxt + (1− p)yt−1

Chapter 2. Gretl functions 206

This is the formula of Roberts (1959). By default the output series y is initialized using the first
valid value of x, but the control parameter may be used to specify the number of initial obser-
vations that should be averaged to produce y0. A zero value for control indicates that all the
observations should be used. Alternatively, an initializer may be specified using the optional y0
argument; in that case the control argument is ignored.

mpiallred

Output: integer

Arguments: &object (reference to object)

op (string)

Available only when gretl is in MPI mode (see gretl + MPI). Must be called by all processes. This
function works like mpireduce except that all processes, not just the root process, get a copy of the
“reduced” object in place of the original. It is therefore equivalent to mpireduce followed by a call
to mpibcast, but more efficient.

mpibarrier

Output: integer

Available only when gretl is in MPI mode (see gretl + MPI). Takes no arguments. Enforces synchro-
nization of MPI processes: no process can continue beyond the barrier until it has been reached by
all.

nobody gets past until everyone gets here
mpibarrier()

mpibcast

Output: integer

Arguments: &object (reference to object)

root (integer, optional)

Available only when gretl is in MPI mode (see gretl + MPI). Must be called by all processes. Broad-
casts the object argument, which must be given in pointer form, to all processes. The object in
question (a matrix, bundle, scalar, array, string or list) must be declared in all processes prior to
the broadcast. No process can continue beyond a call to mpibcast until all processes have success-
fully executed it.

By default “root”, the source of the broadcast, is the MPI process with rank 0, but this can be
adjusted via the optional second argument, which must be an integer from 0 to the number of MPI
processes minus 1.

A simple example follows. On successful completion every process will have a copy of the matrix
X defined at rank 0.

matrix X
if $mpirank == 0

X = mnormal(T, k)
endif
mpibcast(&X)

Chapter 2. Gretl functions 207

mpirecv

Output: object

Argument: src (integer)

Available only when gretl is in MPI mode (see gretl + MPI). See mpisend, with which mpirecv must
always be paired, for an explanation. The src argument specifies the rank of the process from
which the object is to be received, in the range 0 to the number of MPI processes minus 1.

mpireduce

Output: integer

Arguments: &object (reference to object)

op (string)

root (integer, optional)

Available only when gretl is in MPI mode (see gretl + MPI). Must be called by all processes. This
function gathers objects (scalars, matrices or arrays) of a specified name, given in pointer form,
from all processes and “reduces” them to a single object at the root node.

The op argument specifies the reduction operation or method. The methods supported for scalars
are sum, prod (product), max and min. For matrices the methods are sum, prod (Hadamard product),
hcat (horizontal concatenation) and vcat (vertical concatenation). For arrays only acat (concate-
nation) is supported.

By default “root”, the target of the reduction, is the MPI process with rank 0, but this can be adjusted
via the optional third argument, which must be an integer from 0 to the number of MPI processes
minus 1.

An example follows. On successful completion of the above, the root process will have a matrix X
which is the sum of the matrices X at all processes.

matrix X
X = mnormal(T, k)
mpireduce(&X, sum)

mpiscatter

Output: integer

Arguments: &M (reference to matrix)

op (string)

root (integer, optional)

Available only when gretl is in MPI mode (see gretl + MPI). Must be called by all processes. This
function distributes chunks of a matrix in the root process to all processes. The matrix must be
declared in all processes prior to the call to mpiscatter, and must be given in pointer form.

The op argument must be either byrows or bycols. Let q denote the quotient of the number of
rows in the matrix to be scattered and the number of processes. In the byrows case root sends
the first q rows to process 0, the next q to process 1, and so on. If there is a remainder from the
division of rows it is added to the last allotment. The bycols case is exactly analogous but splitting
of the matrix is by columns.

An example follows. If there are 4 processes, each one (including root) will each get a 2500 × 10
share of the original X as it existed in the root process. If you want to preserve the full matrix in
the root process, it is necessary to make a copy of it before calling mpiscatter.

Chapter 2. Gretl functions 208

matrix X
if $mpirank == 0

X = mnormal(10000, 10)
endif
mpiscatter(&X, byrows)

mpisend

Output: integer

Arguments: object (object)

dest (integer)

Available only when gretl is in MPI mode (see gretl + MPI). Sends the named object (a matrix, bundle,
array, scalar, string or list) from the current process to the one identified by the integer dest (from
0 to the number of MPI processes minus 1).

A call to this function must always be paired with a call to mpirecv in the dest process, as in the
following example which sends a matrix from rank 2 to rank 3.

if $mpirank == 2
matrix C = cholesky(A)
mpisend(C, 3)

elif $mpirank == 3
matrix C = mpirecv(2)

endif

mpols

Output: matrix

Arguments: Y (matrix)

X (matrix)

&U (reference to matrix, or null)

Works exactly as mols, except that the calculations are done in multiple precision using the GMP
library.

By default GMP uses 256 bits for each floating point number, but you can adjust this using the
environment variable GRETL_MP_BITS, e.g. GRETL_MP_BITS=1024.

mrandgen

Output: matrix

Arguments: d (string)

p1 (scalar or matrix)

p2 (scalar or matrix, conditional)

p3 (scalar, conditional)

rows (integer)

cols (integer)

Examples: matrix mx = mrandgen(u, 0, 100, 50, 1)

matrix mt14 = mrandgen(t, 14, 20, 20)

matrix D = mrandgen(dir, {0.5,1,2,4}, 30)

With one exception (see below), this function works like randgen except that the return value is a
matrix rather than a series. The initial arguments to this function (the number of which depends on

Chapter 2. Gretl functions 209

the selected distribution) are as described for randgen, but they must be followed by two integers
to specify the row and column dimensions of the desired random matrix. If p1 or p2 are given in
matrix form they must have a number of elements equal to the product of rows and cols.

The exceptional case is the Dirichlet distribution. This is a multivariate distribution, and invoking
mrandgen with “dir” as first parameter triggers special syntax: the second argument must be a
k-element positive vector a, and the third a scalar r . The function will return an r ×kmatrix where
each row is an independent draw from a Dirichlet distribution with parameter a.

The first example above calls for a column vector of length 50 holding draws from a continuous
uniform distribution on [0,100]. The second example specifies a 20×20 random matrix with draws
from the t distribution with 14 degrees of freedom; and the third returns a 30 × 4 matrix holding
30 draws from a specified Dirichlet distribution.

See also mnormal, muniform.

mread

Output: matrix

Arguments: fname (string)

import (boolean, optional)

Reads a matrix from a file named fname. If the file name does not contain a full path specification,
it will be looked for in several “likely” locations, beginning with the currently set workdir. However,
if a non-zero value is given for the optional import argument, the input file is looked for in the
user’s “dot” directory. This is intended for use with the matrix-exporting functions offered in the
context of the foreign command. In this case the fname argument should be a plain filename,
without any path component.

Currently, the function recognizes four file formats:

Native text format

These files are identified by the extension “.mat”, and are fully compatible with the Ox matrix file
format. If the filename has the suffix “.gz” it is assumed that gzip compression has been applied
in writing the data.

The file is assumed to be plain text, conforming to the following specification:

• It starts with zero or more comments, defined as lines that start with the hash mark, #; such
lines are ignored.

• The first non-comment line contains two integers, separated by a tab character, indicating the
number of rows and columns, respectively.

• The columns are separated by tabs.

• The decimal separator is the dot character, “.”.

Binary files

Files with the suffix “.bin” are assumed to be in binary format. The “.gz” suffix, for gzip com-
pression, is also recognized. The first 19 bytes contain the characters gretl_binary_matrix, the
next 8 bytes contain two 32-bit integers giving the number of rows and columns, and the remain-
der of the file contains the matrix elements as little-endian “doubles”, in column-major order. If
gretl is run on a big-endian system, the binary values are converted to little endian on writing, and
converted to big endian on reading.

Chapter 2. Gretl functions 210

Delimited text files

If the name of the file to be read has extension “.csv” the rules governing the format of the file are
different, and more relaxed. In this case the actual data should not be preceded by a line giving the
number of rows and columns. Gretl will try to figure out the delimiter (comma, semicolon or space)
and do its best to import the matrix, allowing for use of comma as decimal separator if need be.
Note that the delimiter should not be the tab character, on pain of confusing such files with those
in gretl’s “native” matrix format.

Gretl dataset files

Files with extension “.gdt” or “.gdtb” are treated as gretl native data files, as created by the store
command. In this case, the matrix returned contains the numerical values of the series of the
dataset, arranged by column. Note that string-valued series are not read as such; the matrix will
just contain their numeric encodings.

See also bread, mwrite.

mreverse

Output: matrix

Arguments: X (matrix)

bycol (boolean, optional)

Returns a matrix containing the rows of X in reverse order, or the columns in reverse order if the
optional second argument has a non-zero value.

mrls

Output: matrix

Arguments: Y (matrix)

X (matrix)

R (matrix)

q (column vector)

&U (reference to matrix, or null)

&V (reference to matrix, or null)

Restricted least squares: returns a k × n matrix of parameter estimates obtained by least-squares
regression of the T × n matrix Y on the T × k matrix X subject to the linear restriction RB = q,
where B denotes the stacked coefficient vector. R must have kn columns; each row of this matrix
represents a linear restriction. The number of rows in q must match the number of rows in R.

If the fifth argument is not null, the T ×nmatrix U will contain the residuals. If the final argument
is given and is not null then the k× k matrix V will hold the restricted counterpart to the matrix
X′X−1. The variance matrix of the estimates for equation i can be constructed by multiplying the
appropriate sub-matrix of V by an estimate of the error variance for that equation.

mshape

Output: matrix

Arguments: X (matrix)

r (integer)

c (integer, optional)

Rearranges the elements of X into a matrix with r rows and c columns. Elements are read from
X and written to the target in column-major order. If X contains fewer than k = rc elements, the
elements are repeated cyclically; otherwise, if X has more elements, only the first k are used.

Chapter 2. Gretl functions 211

If the third argument is omitted, c defaults to 1 if X is 1× 1 otherwise to N/r where N is the total
number of elements in X. However, if N is not an integer multiple of r an error is flagged.

See also cols, rows, unvech, vec, vech.

msortby

Output: matrix

Arguments: X (matrix)

j (integer)

Returns a matrix in which the rows of X are reordered by increasing value of the elements in column
j. This is a stable sort: rows that share the same value in column j will not be interchanged.

msplitby

Output: array of matrices

Arguments: X (matrix)

v (scalar or matrix)

bycol (boolean)

Returns an array of matrices, the result of splitting X horizontally or vertically under the control
of the arguments v and bycol. If bycol is nonzero, the matrix will be split by columns; otherwise,
as per default, by rows.

The argument v can be either a vector or a scalar.

• vector: must be of length equal to the relevant (row or column) dimension of X, and must
contain positive integers. The greatest integer sets the length of the array that is returned.
Each element of v indicates the array index of the matrix to which the corresponding row of
X should be assigned.

• scalar: the relevant dimension of X (row or column, as dictated by bycol) must be an exact
multiple of the scalar value. X will be split in chunks with v rows or columns each.

In the following example we split a 4×3 matrix into three matrices: the first two rows are assigned
to the first matrix; the second matrix is left empty; the third and fourth matrices gets row 3 and 4
of X, respectively

matrix X = {1,2,3; 4,5,6; 7,8,9; 10,11,12}
matrices M = msplitby(X, {1,1,3,4})
print M

The print statement gives

Array of matrices, length 4
[1] 2 x 3
[2] null
[3] 1 x 3
[4] 1 x 3

The next example splits X evenly:

Chapter 2. Gretl functions 212

matrix X = {1,2,3; 4,5,6; 7,8,9; 10,11,12}
matrices MM = msplitby(X, 2)
print MM[1]
print MM[2]

which gives

? print MM[1]
1 2 3
4 5 6

? print MM[2]
7 8 9
10 11 12

See flatten for the inverse operation.

muniform

Output: matrix

Arguments: r (integer)

c (integer, optional)

Returns a matrix with r rows and c columns, filled with uniform (0,1) pseudo-random variates. If
omitted, the number of columns defaults to 1 (column vector). Note: the preferred method for
generating a scalar uniform r.v. is to use the randgen1 function.

See also mnormal, uniform.

mweights

Output: matrix

Arguments: p (integer)

theta (vector)

type (integer or string)

Returns a p-vector of MIDAS weights to be applied to p lags of a high-frequency series, based on
the vector theta of hyper-parameters.

The type argument identifies the type of parameterization, which governs the required number of
elements, k, in theta: 1 = normalized exponential Almon (k at least 1, typically 2); 2 = normalized
beta with zero last (k = 2); 3 = normalized beta with non-zero last lag (k = 3); and 4 = Almon
polynomial (k at least 1). Note that in the normalized beta case the first two elements of theta must
be positive.

The type may be given as an integer code, as shown above, or by one of the following strings
(respectively): nealmon, beta0, betan, almonp. If a string is used, it should be placed in double
quotes. For example, the following two statements are equivalent:

W = mweights(8, theta, 2)
W = mweights(8, theta, "beta0")

See also mgradient, midasmult, mlincomb.

Chapter 2. Gretl functions 213

mwrite

Output: integer

Arguments: X (matrix)

fname (string)

export (boolean, optional)

Writes the matrix X to a file named fname. By default this file will be plain text; the first line will
hold two integers, separated by a tab character, representing the number of rows and columns; on
the following lines the matrix elements appear, in scientific notation, separated by tabs (one line
per row). To avoid confusion on reading, files to be written in this format should be named with
the suffix “.mat”. See below for alternative formats.

If a file fname already exists, it will be overwritten. The nominal return value is 0 on successful
completion; if writing fails an error is flagged.

The output file will be written in the currently set workdir, unless the filename string contains a full
path specification. However, if a non-zero value is given for the export argument, the output file
will be written into the user’s “dot” directory, where it is accessible by default via the matrix-loading
functions offered in the context of the foreign command. In this case a plain filename, without any
path component, should be given for the second argument.

Matrices stored via the mwrite function in its default form can be easily read by other programs;
see chapter 17 of the Gretl User’s Guide for details.

Three mutually exclusive inflections of this function are available, as follows:

• If fname has the suffix “.gz” then the file is written in the format described above but with
gzip compression.

• If fname has the suffix “.bin” then the matrix is written in binary format. In this case the first
19 bytes contain the characters gretl_binary_matrix, the next 8 bytes contain two 32-bit
integers giving the number of rows and columns, and the remainder of the file contains the
matrix elements as little-endian “doubles”, in column-major order. If gretl is run on a big-
endian system, the binary values are converted to little endian on writing, and converted to
big endian on reading.

• If fname has the suffix “.csv” then the matrix is written in comma-separated format, without
a header line indicating the number of rows and columns to follow. This may be easier for
third-party programs to handle, but it is not recommended if the matrix file is intended for
reading by gretl.

Note that if the matrix file is to be read by a third-party program it is not advisable to use the gzip
or binary options. But if the file is intended for reading by gretl the alternative formats save space,
and the binary format allows for much faster reading of large matrices. The gzip format is not
recommended for very large matrices, since decompression can be quite slow.

See also mread. And for writing a matrix to file as a dataset, see store.

mxtab

Output: matrix

Arguments: x (series or vector)

y (series or vector)

Returns a matrix holding the cross tabulation of the values contained in x (by row) and y (by
column). The two arguments should be of the same type (both series or both column vectors). It
is generally expected (though not required) that the arguments will be discrete-valued, with fewer

Chapter 2. Gretl functions 214

distinct values than observations. Otherwise the cross-tabulation may be very large and not very
informative.

See also values, corresp.

naalen

Output: matrix

Arguments: d (series or vector)

cens (series or vector, optional)

Given a sample of duration data, d, possibly accompanied by a record of censoring status, cens,
computes the Nelson–Aalen nonparametric estimator of the hazard function (Nelson (1972); Aalen
(1978)). The returned matrix has three columns holding, respectively, the sorted unique values in
d, the estimated cumulated hazard function corresponding to the duration value in column 1, and
the standard error of the estimator.

If the cens series is given, the value 0 is taken to indicate an uncensored observation while a value
of 1 indicates a right-censored observation (that is, the period of observation of the individual in
question has ended before the duration or spell has been recorded as terminated). If cens is not
given, it is assumed that all observations are uncensored. (Note: the semantics of cens may be
extended at some point to cover other types of censoring.)

See also kmeier.

nadarwat

Output: series

Arguments: y (series)

x (series)

h (scalar, optional)

LOO (boolean, optional)

trim (scalar, optional)

Computes the Nadaraya–Watson nonparametric estimator of the conditional mean of y given x.
The return value is a series holding m(xi), the estimate of E(yi|xi) for each non-missing element
of the series x.

m(xi) =
∑n
j=1yj ·Kh(xi − xj)∑n
j=1Kh(xi − xj)

where the kernel function Kh(·) is given by

Kh(x) = exp

(
−x

2

2h

)

for |x| < τ and zero otherwise. (τ = trimming parameter.)

The three optional arguments inflect the behavior of the estimator as described below.

Bandwidth

The argument h can be used to control the bandwidth, a positive real number. This is usually small;
larger values of h makem(x) smoother. A popular choice is to make h proportional to n−0.2. If h is
omitted or set to zero, the bandwidth defaults to a data-determined value using the proportionality
just mentioned but incorporating the dispersion of the x data as measured by the inter-quartile
range or standard deviation; see chapter 40 of the Gretl User’s Guide for more details.

Chapter 2. Gretl functions 215

Leave-one-out

“Leave-one-out” is a variant of the algorithm which omits the i-th observation when evaluating
m(xi). This makes the Nadaraya–Watson estimator more robust numerically and is generally
advised when the estimator is computed for inference purposes. This variant is not enabled by
default, but is activated if a non-zero value is given for the LOO argument.

In formulae, this estimator is

m(xi) =
∑
j ̸=iyj ·Kh(xi − xj)∑
j ̸=iKh(xi − xj)

Trimming

The trim argument can be used to control the degree of “trimming”, which is imposed to prevent
numerical problems when the kernel function is evaluated too far away from zero. This parameter
is expressed as a multiple of h, the default value being 4. In some cases a value greater than 4 may
be preferable. Again see chapter 40 of the Gretl User’s Guide for details.

See also loess.

nelem

Output: integer

Argument: L (list, matrix, bundle or array)

Returns the number of elements in the argument, which may be a list, a matrix, a bundle, an array
or a string, but not a series. In the case of a string argument the number of bytes (which may not
be equal to the number of characters in the string) is returned; see also strlen.

ngetenv

Output: scalar

Argument: s (string)

If an environment variable by the name of s is defined and has a numerical value, returns that value;
otherwise returns NA. See also getenv.

nlines

Output: scalar

Argument: buf (string)

Returns a count of the complete lines (that is, lines that end with the newline character) in buf.

Example:

string web_page = readfile("http://gretl.sourceforge.net/")
scalar number = nlines(web_page)
print number

NMmax

Output: scalar

Arguments: &b (reference to matrix)

f (function call)

maxfeval (integer, optional)

Chapter 2. Gretl functions 216

Numerical maximization via the Nelder–Mead derivative-free simplex method. On input the vector
b should hold the initial values of a set of parameters, and the argument f should specify a call to a
function that calculates the (scalar) criterion to be maximized, given the current parameter values
and any other relevant data. On successful completion, NMmax returns the maximized value of the
criterion, and b holds the parameter values which produce the maximum.

The optional third argument may be used to set the maximum number of function evaluations; if
it is omitted or set to zero the maximum defaults to 2000. As a special signal to this function the
maxfeval value may be set to a negative number. In this case the absolute value is taken, and NMmax
flags an error if the best value found for the objective function at the maximum number of function
evaluations is not a local optimum. Otherwise non-convergence in this sense is not treated as an
error.

If the object is in fact minimization, either the function call should return the negative of the
criterion or alternatively NMmax may be called under the alias NMmin.

For more details and examples chapter 37 of the Gretl User’s Guide. See also simann.

NMmin

Output: scalar

An alias for NMmax; if called under this name the function acts as a minimizer.

nobs

Output: scalar or series

Argument: x (series or list)

If x is a series, returns the number of non-missing observations for this series in the currently
selected sample.

If x is a list, returns a series y such that yt is the count of the series in the list that have a
non-missing value at observation t.

See also pnobs, pxnobs.

normal

Output: series

Arguments: $\mu $ (scalar)

$\sigma $ (scalar)

Generates a series of Gaussian pseudo-random variates with mean µ and standard deviation σ . If
no arguments are supplied, standard normal variates N(0,1) are produced. The values are produced
using the Ziggurat method (Marsaglia and Tsang, 2000).

See also randgen, mnormal, muniform.

normtest

Output: matrix

Arguments: y (series or vector)

method (string, optional)

Carries out one or more tests for normality of y. By default the Doornik–Hansen test is performed
but the optional method argument can be used to select an alternative: use swilk to get the
Shapiro–Wilk test, jbera for Jarque–Bera test, or lillie for the Lilliefors test. Or give all for the
method argument to carry out all four tests.

Chapter 2. Gretl functions 217

The second argument may be given in either quoted or unquoted form. In the latter case, however,
if the argument is the name of a string variable the value of the variable is substituted.

The returned matrix is 1 × 2 for a single test, or 4 × 2 if all tests are performed. Test statistics
are found in the first column and p-values in the second. The test statistic does not follow the
same distribution is all cases. For Doornik–Hansen and Jarque–Bera it is chi-square(2); for the other
methods it is an idiosyncratic statistic whose p-value requires special calculation.

See also the normtest command.

npcorr

Output: matrix

Arguments: x (series or vector)

y (series or vector)

method (string, optional)

Calculates a measure of correlation between x and y using a nonparametric method. If given,
the third argument should be either kendall (for Kendall’s tau, version b, the default method) or
spearman (for Spearman’s rho).

The return value is a 3-vector holding the correlation measure plus a test statistic and p-value for
the null hypothesis of no correlation. Note that if the sample size is too small the test statistic
and/or p-value may be NaN (not a number, or missing).

See also corr for Pearson correlation.

npv

Output: scalar

Arguments: x (series or vector)

r (scalar)

Returns the Net Present Value of x, considered as a sequence of payments (negative) and receipts
(positive), evaluated at annual discount rate r, which must be expressed as a decimal fraction, not a
percentage (0.05 rather than 5%). The first value is taken as dated “now” and is not discounted. To
emulate an NPV function in which the first value is discounted, prepend zero to the input sequence.

Supported data frequencies are annual, quarterly, monthly, and undated (undated data are treated
as if annual).

See also irr.

NRmax

Output: scalar

Arguments: &b (reference to matrix)

f (function call)

g (function call, optional)

h (function call, optional)

Numerical maximization via the Newton–Raphson method. On input the vector b should hold the
initial values of a set of parameters, and the argument f should specify a call to a function that
calculates the (scalar) criterion to be maximized, given the current parameter values and any other
relevant data. If the object is in fact minimization, this function should return the negative of the
criterion. On successful completion, NRmax returns the maximized value of the criterion, and b
holds the parameter values which produce the maximum.

Chapter 2. Gretl functions 218

The optional third and fourth arguments provide means of supplying analytical derivatives and an
analytical (negative) Hessian, respectively. The functions referenced by g and h must take as their
first argument a predefined matrix that is of the correct size to contain the gradient or Hessian,
respectively, given in pointer form. They also must take the parameter vector as an argument
(in pointer form or otherwise). Other arguments are optional. If either or both of the optional
arguments are omitted, a numerical approximation is used.

For more details and examples see chapter 37 of the Gretl User’s Guide. See also BFGSmax, fdjac.

NRmin

Output: scalar

An alias for NRmax; if called under this name the function acts as a minimizer.

nullspace

Output: matrix

Argument: A (matrix)

Computes the right nullspace of A, via the singular value decomposition: the result is a matrix B
such that

• AB = [0], except when A has full column rank, in which case an empty matrix is returned.
Otherwise, if A is m×n, B will be an n× (n− r) matrix, where r is the rank of A.

• If A is not of full column rank, then the vertical concatenation of A and B′ produces a full
rank matrix.

Example:

A = mshape(seq(1,6),2,3)
B = nullspace(A)
C = A | B’

print A B C

eval A*B
eval rank(C)

Produces

? print A B C
A (2 x 3)

1 3 5
2 4 6

B (3 x 1)

-0.5
1

-0.5

C (3 x 3)

1 3 5

Chapter 2. Gretl functions 219

2 4 6
-0.5 1 -0.5

? eval A*B
-4.4409e-16
-4.4409e-16

? eval rank(C)
3

See also rank, svd.

numhess

Output: matrix

Arguments: b (column vector)

fcall (function call)

d (scalar, optional)

Calculates a numerical approximation to the Hessian associated with the n-vector b and the objec-
tive function specified by the argument fcall. The function call should take b as its first argument
(either straight or in pointer form), followed by any additional arguments that may be needed, and
it should return a scalar result. On successful completion numhess returns an n×nmatrix holding
the Hessian, which is exactly symmetric by construction.

The method used is Richardson extrapolation, with four steps. The optional third argument can
be used to set the fraction d of the parameter value used in setting the initial step size; if this
argument is omitted the default is d = 0.01.

Here is an example of usage:

matrix H = numhess(theta, myfunc(&theta, X))

See also BFGSmax, fdjac.

obs

Output: series

Returns a series of consecutive integers, setting 1 at the start of the dataset. Note that the result
is invariant to subsampling. This function is especially useful with time-series datasets. Note: you
can write t instead of obs with the same effect.

See also obsnum.

obslabel

Output: string or array of strings

Argument: t (scalar or vector)

If t is a scalar, returns a single string, the observation label for observation t. The inverse function
is provided by obsnum.

If t is a vector, returns an array of strings, the observation labels for the observations given by the
elements of t.

In either case the t values must be integers, valid as 1-based indices of observations in the current
dataset, otherwise an error is flagged.

Chapter 2. Gretl functions 220

obsnum

Output: integer

Argument: s (string)

Returns an integer corresponding to the observation specified by the string s. Note that the result is
invariant to subsampling. This function is especially useful with time-series datasets. For example,
the following code

open denmark
k = obsnum(1980:1)

yields k = 25, indicating that the first quarter of 1980 is the 25th observation in the denmark
dataset.

See also obs, obslabel.

ok

Output: see below

Argument: x (scalar, series, matrix or list)

If x is a scalar, returns 1 if x is not NA, otherwise 0. If x is a series, returns a series with value 1 at
observations with non-missing values and zeros elsewhere. If x is a list, the output is a series with
0 at observations for which at least one series in the list has a missing value, and 1 otherwise.

If x is a matrix the function returns a matrix of the same dimensions as x, with 1s in positions
corresponding to finite elements of x and 0s in positions where the elements are non-finite (either
infinities or not-a-number, as per the IEEE 754 standard).

See also missing, misszero, zeromiss. But note that these functions are not applicable to matrices.

onenorm

Output: scalar

Argument: X (matrix)

Returns the 1-norm of the r × c matrix X :

∥X∥1 = max
j

r∑
i=1

|Xij|

See also infnorm, rcond.

ones

Output: matrix

Arguments: r (integer)

c (integer, optional)

Outputs a matrix with r rows and c columns, filled with ones. If omitted, the number of columns
defaults to 1 (column vector).

See also seq, zeros.

Chapter 2. Gretl functions 221

orthdev

Output: series

Argument: y (series)

Only applicable if the currently open dataset has a panel structure. Computes the forward orthog-
onal deviations for variable y, that is

ỹi,t =
√

Ti − t
Ti − t + 1

yi,t − 1
Ti − t

Ti∑
s=t+1

yi,s


This transformation is sometimes used instead of differencing to remove individual effects from
panel data. For compatibility with first differences, the deviations are stored one step ahead of their
true temporal location (that is, the value at observation t is the deviation that, strictly speaking,
belongs at t − 1). That way one loses the first observation in each time series, not the last.

See also diff.

pdf

Output: same type as input

Arguments: d (string)

\dots {} (see below)

x (scalar, series or matrix)

Examples: f1 = pdf(N, -2.5)

f2 = pdf(X, 3, y)

f3 = pdf(W, shape, scale, y)

Probability density function calculator. Returns the density at x of the distribution identified by
the code d. See cdf for details of the required (scalar) arguments. The distributions supported
by the pdf function are the normal, Student’s t, chi-square, F , Gamma, Beta, Exponential, Weibull,
Laplace, Generalized Error, Binomial and Poisson. Note that for the Binomial and the Poisson what’s
calculated is in fact the probability mass at the specified point. For Student’s t, chi-square, F the
noncentral variants are supported too.

For the normal distribution, see also dnorm.

pergm

Output: matrix

Arguments: x (series or vector)

bandwidth (scalar, optional)

If only the first argument is given, computes the sample periodogram for the given series or vector.
If the second argument is given, computes an estimate of the spectrum of x using a Bartlett lag
window of the given bandwidth, up to a maximum of half the number of observations (T/2).

Returns a matrix with two columns and T/2 rows: the first column holds the frequency, ω, from
2π/T to π , and the second the corresponding spectral density.

pexpand

Output: series

Arguments: v (vector)

by_individual (boolean, optional)

Chapter 2. Gretl functions 222

Only applicable if the currently open dataset has a panel structure. By default, performs the inverse
operation of pshrink. That is, given a vector of length equal to the number of individuals in the
current panel sample, it returns a series in which each value is repeated T times, for T the time-
series length of the panel. The resulting series is therefore non-time varying.

If a non-zero value is given for by_individual, the length of v should equal T and repetition is across
the individuals in the panel.

pmax

Output: series

Arguments: y (series)

mask (series, optional)

Only applicable if the current dataset has a panel structure. Returns a series holding the maxima
of variable y for each cross-sectional unit (repeated for each time period).

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmin, pmean, pnobs, psd, pxsum, pshrink, psum.

pmean

Output: series

Arguments: y (series)

mask (series, optional)

Only applicable if the current dataset has a panel structure. Computes the time-mean of variable y
for each cross-sectional unit; that is,

ȳi =
1
Ti

Ti∑
t=1

yi,t

where Ti is the number of valid observations for unit i.

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmin, pnobs, psd, pxsum, pshrink, psum.

pmin

Output: series

Arguments: y (series)

mask (series, optional)

Only applicable if the current dataset has a panel structure. Returns a series holding the minima of
variable y for each cross-sectional unit (repeated for each time period).

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmean, pnobs, psd, pshrink, psum.

pnobs

Output: series

Arguments: y (series)

mask (series, optional)

Chapter 2. Gretl functions 223

Only applicable if the current dataset has a panel structure. Returns a series holding the number
of valid observations of variable y for each cross-sectional unit (repeated for each time period).

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmin, pmean, psd, pshrink, psum.

polroots

Output: matrix

Argument: a (vector)

Finds the roots of a polynomial. If the polynomial is of degree p, the vector a should contain p +
1 coefficients in ascending order, i.e. starting with the constant and ending with the coefficient on
xp.

The return value is a complex column vector of length p.

polyfit

Output: series

Arguments: y (series)

q (integer)

Fits a polynomial trend of order q to the input series y using the method of orthogonal polynomials.
The series returned holds the fitted values.

princomp

Output: matrix

Arguments: X (matrix)

p (integer)

covmat (boolean, optional)

Let the matrix X be T × k, containing T observations on k variables. The argument p must be a
positive integer less than or equal to k. This function returns a T × p matrix, P , holding the first p
principal components of X.

The optional third argument acts as a boolean switch: if it is non-zero the principal components
are computed on the basis of the covariance matrix of the columns of X (the default is to use the
correlation matrix).

The elements of P are computed as

Ptj =
k∑
i=1

Zti v
(j)
i

where Zti is the standardized value (or just the centered value, if the covariance matrix is used)
of variable i at observation t, Zti = (Xti − X̄i)/σ̂i, and v(j)i is the jth eigenvector of the correla-
tion (or covariance) matrix of the Xis, with the eigenvectors ordered by decreasing value of the
corresponding eigenvalues.

See also eigensym.

Chapter 2. Gretl functions 224

prodc

Output: row vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the product of the elements of X, by column. If a non-zero value is given for the optional
second argument missing values are ignored, otherwise the result is NA for any columns that con-
tain missing values. Note that specifying skip_na is equivalent to treating missing values as if they
were 1s.

See also prodr, meanc, sdc, sumc.

prodr

Output: column vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the product of the elements of X, by row. If a non-zero value is given for the optional
second argument missing values are ignored, otherwise the result is NA for any rows that contain
missing values. Note that specifying skip_na is equivalent to treating missing values as if they were
1s.

See also prodc, meanr, sumr.

psd

Output: series

Arguments: y (series)

mask (series, optional)

Only applicable if the current dataset has a panel structure. Computes the per-unit sample standard
deviation for variable y , that is

σi =

√√√√√ 1
Ti − 1

Ti∑
t=1

(yi,t − ȳi)2

The above formula holds for Ti ≥ 2, where Ti is the number of valid observations for unit i; if
Ti = 0, NA is returned; if Ti = 1, 0 is returned.

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

Note: this function makes it possible to check whether a given variable (say, X) is time-invariant via
the condition max(psd(X)) == 0.

See also pmax, pmin, pmean, pnobs, pshrink, psum.

psdroot

Output: square matrix

Arguments: A (symmetric matrix)

psdcheck (boolean, optional)

Performs a generalized variant of the Cholesky decomposition of the matrix A, which must be
positive semidefinite (but may be singular). If the input matrix is not square an error is flagged,
but symmetry is assumed and not tested; only the lower triangle of A is read. The result is a

Chapter 2. Gretl functions 225

lower-triangular matrix L which satisfies A = LL′. Indeterminate elements in the solution are set to
zero.

To force a check on the positive semidefiniteness of A, give a non-zero value for the optional second
argument. In that case an error is flagged if the maximum absolute value of A−LL′ exceeds 1.0e-8.
Such a check can also be performed manually:

L = psdroot(A)
chk = maxc(maxr(abs(A - L*L’)))

For the case where A is positive definite, see cholesky.

pshrink

Output: matrix

Argument: y (series)

Only applicable if the current dataset has a panel structure. Returns a column vector holding the
first valid observation for the series y for each cross-sectional unit in the panel, over the current
sample range. If a unit has no valid observations for the input series it is skipped.

This function provides a means of compacting the series returned by functions such as pmax and
pmean, in which a value pertaining to each cross-sectional unit is repeated for each time period.

See pexpand for the inverse operation.

psum

Output: series

Arguments: y (series)

mask (series, optional)

This function is applicable only if the current dataset has a panel structure. It computes the sum
over time of variable y for each cross-sectional unit; that is,

Si =
Ti∑
t=1

yi,t

where Ti is the number of valid observations for unit i.

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmean, pmin, pnobs, psd, pxsum, pshrink.

pvalue

Output: same type as input

Arguments: c (character)

\dots {} (see below)

x (scalar, series or matrix)

Examples: p1 = pvalue(z, 2.2)

p2 = pvalue(X, 3, 5.67)

p2 = pvalue(F, 3, 30, 5.67)

P -value calculator. Returns P(X > x), where the distribution of X is determined by the character
c. Between the arguments c and x, zero or more additional arguments are required to specify the

Chapter 2. Gretl functions 226

parameters of the distribution; see cdf for details. The distributions supported by the pvalue
function are the standard normal, t, Chi square, F , gamma, binomial, Poisson, Exponential, Weibull,
Laplace and Generalized Error.

See also critical, invcdf, urcpval, imhof.

pxnobs

Output: series

Arguments: y (series)

mask (series, optional)

Only applicable if the current dataset has a panel structure. Returns a series holding the number
of valid observations of y in each time period (this count being repeated for each unit).

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

Note that this function works in a different dimension from the pnobs function.

pxsum

Output: series

Arguments: y (series)

mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Computes the cross-sectional
sum for variable y in each period; that is,

ỹt =
N∑
i=1

yi,t

where N is the number of cross-sectional units.

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

Note that this function works in a different dimension from the psum function.

qform

Output: matrix

Arguments: x (matrix)

A (symmetric matrix)

Computes the quadratic form Y = xAx′. Using this function instead of ordinary matrix multiplica-
tion guarantees more speed and better accuracy, when A is a generic symmetric matrix. However, in
the special caseA = I, the simple expression x’x performs much better than qform(x’,I(rows(x)).

In the special case when A is a diagonal matrix, the second argument can be given as a vector of
the appropriate size, which is understood to contain the main diagonal of A. In this case, a more
efficient algorithm is used.

If x and A are not conformable, or A is not symmetric, an error is returned.

Chapter 2. Gretl functions 227

qlrpval

Output: scalar

Arguments: X2 (scalar)

df (integer)

p1 (scalar)

p2 (scalar)

P -values for the test statistic from the QLR sup-Wald test for a structural break at an unknown
point (see qlrtest), as per Hansen (1997).

The first argument, X2, denotes the (chi-square form of) the maximum Wald test statistic and df
denotes its degrees of freedom. The third and fourth arguments represent, as decimal fractions
of the overall estimation range, the starting and ending points of the central range of observations
over which the successive Wald tests are calculated. For example if the standard approach of 15
percent trimming is adopted, you would set p1 to 0.15 and p2 to 0.85.

See also pvalue, urcpval.

qnorm

Output: same type as input

Argument: x (scalar, series or matrix)

Returns quantiles for the standard normal distribution. If x is not between 0 and 1, NA is returned.
See also cnorm, dnorm.

qrdecomp

Output: matrix

Arguments: X (matrix)

&R (reference to matrix, or null)

&P (reference to matrix, or null)

Computes the “thin” QR decomposition of an m × n matrix X with m >= n, such that X = QR
where Q is anm×n orthogonal matrix and R is an n×n upper triangular matrix. The matrix Q is
returned directly, while R can be retrieved via the optional second argument.

If the optional third argument is supplied the decomposition employs column pivoting, and on
successful completion P holds the final ordering of the columns in the form of a row vector. If the
columns are not in fact reordered P will compare equal to seq(1, n).

See also eigengen, eigensym, svd.

quadtable

Output: matrix

Arguments: n (integer)

type (integer, optional)

a (scalar, optional)

b (scalar, optional)

Returns an n×2 matrix for use with Gaussian quadrature (numerical integration). The first column
holds the nodes or abscissae, the second the weights.

The first argument specifies the number of points (rows) to compute. The second argument codes
for the type of quadrature: use 1 for Gauss–Hermite (the default); 2 for Gauss–Legendre; or 3 for

Chapter 2. Gretl functions 228

Gauss–Laguerre. The significance of the optional parameters a and b depends on the selected type,
as explained below.

Gaussian quadrature is a method of approximating numerically the definite integral of some func-
tion of interest. Let the function be represented as the product f(x)W(x). The types of quadrature
differ in the specification of the component W(x): in the Hermite case we have W(x) = exp(−x2);
in the Laguerre case, W(x) = exp(−x); and in the Legendre case simply W(x) = 1.

For each specification of W(x), one can compute a set of nodes, xi, and weights, wi, such that∑n
i=1 f(xi)wi approximates the desired integral. The method of Golub and Welsch (1969) is used.

When the Gauss–Legendre type is selected, the optional arguments a and b can be used to control
the lower and upper limits of integration, the default values being −1 and 1. (In Hermite quadrature
the limits are fixed at −∞ and +∞, while in the Laguerre case they are fixed at 0 and ∞.)

In the Hermite case a and b play a different role: they can be used to replace the default form of
W(x) with the (closely related) normal distribution with mean a and standard deviation b. Supply-
ing values of 0 and 1 for these parameters, for example, has the effect of making W(x) into the
standard normal pdf, which is equivalent to multiplying the default xi values by

√
2 and dividing

the default wi by
√
π .

quantile

Output: scalar or matrix

Arguments: y (series or matrix)

p (scalar or vector)

If y is a series, returns the p-quantile for the series. For example, when p = 0.5, the median is
returned.

If y is a matrix, returns a row vector containing the p-quantiles for the columns of y ; that is, each
column is treated as a series.

In addition, for matrix y an alternate form of the second argument is supported: p may be given as
a vector. In that case the return value is an m×n matrix, where m is the number of elements in p
and n is the number of columns in y.

Hyndman and Fan (1996) describe nine variant methods for calculating sample quantiles. The
default method in gretl is the one they call Q6 (which is also the default in Python). Method Q7 (the
default in R) or Q8 (the one recommended by Hyndman and Fan) can be selected instead via the set
command, as in

set quantile_type Q7 # or Q8

The p-quantile, Qp, for a series y of length n is defined as:

Qp = y[k] + (h− k)(y[k+1] −y[k])

where k is the integer part of h, a term that differs by method—h = (n+ 1)p for Q6, (n− 1)p + 1
for Q7 and (n + 1/3)p + 1/3 for Q8 —and y[i] is the i-th element of the series when sorted from
smallest to largest.

For example, the code

set verbose off
matrix x = seq(1,7)’
set quantile_type Q6
printf "Q6: %g\n", quantile(x, 0.45)
set quantile_type Q7

Chapter 2. Gretl functions 229

printf "Q7: %g\n", quantile(x, 0.45)
set quantile_type Q8
printf "Q8: %g\n", quantile(x, 0.45)

produces the following output:

Q6: 3.6
Q7: 3.7
Q8: 3.63333

randgen

Output: series

Arguments: d (string)

p1 (see below)

p2 (scalar or series, conditional)

p3 (scalar, conditional)

Examples: series x = randgen(u, 0, 100)

series t14 = randgen(t, 14)

series y = randgen(B, 0.6, 30)

series g = randgen(G, 1, 1)

series P = randgen(P, mu)

All-purpose random number generator. The argument d is a string (in most cases just a single char-
acter) which specifies the distribution from which the pseudo-random numbers should be drawn.
The arguments p1 to p3 specify the parameters of the selected distribution; the number of such
parameters (and, in some cases, their nature) depends on the distribution.

For distributions other than the beta-binomial and the generic discrete, the parameters p1 and (if
applicable) p2 may be given as either scalars or series: if they are given as scalars the output series
is identically distributed, while if a series is given for p1 or p2 the distribution is conditional on the
parameter value at each observation.

The two special cases have the following requirements:

• beta-binomial: all three parameters must be scalar.

• generic discrete: a single parameter is wanted, namely a k-vector whose elements represent
the probabilities for an integer-valued random variable with support from 1 to k.

Specifics are given below: the string code for each distribution is shown in parentheses, followed
by the interpretation of the arguments p1 and, where applicable, p2 and p3.

Chapter 2. Gretl functions 230

Distribution d p1 p2 p3

Uniform (continuous) u or U minimum maximum –

Uniform (discrete) i minimum maximum –

Normal z, n or N mean standard deviation –

Student’s t t degrees of freedom – –

Chi square c, x or X degrees of freedom – –

Snedecor’s F f or F df (num.) df (den.) –

Gamma g or G shape scale –

Binomial b or B p n –

Poisson p or P mean – –

Exponential exp scale – –

Logistic s location scale –

Weibull w or W shape scale –

Laplace l or L mean scale –

Generalized Error e or E shape – –

Beta beta shape1 shape2 –

Beta-Binomial bb n shape1 shape2

Generic discrete disc p – –

See also normal, uniform, mrandgen, randgen1.

randgen1

Output: scalar

Arguments: d (character)

p1 (scalar)

p2 (scalar, conditional)

Examples: scalar x = randgen1(z, 0, 1)

scalar g = randgen1(g, 3, 2.5)

Works like randgen except that the return value is a scalar rather than a series.

The first example above calls for a value from the standard normal distribution, while the second
specifies a drawing from the Gamma distribution with shape 3 and scale 2.5.

See also mrandgen.

randint

Output: integer

Arguments: min (integer)

max (integer)

Returns a pseudo-random integer in the closed interval [min, max]. See also randgen.

randperm

Output: vector

Arguments: n (integer)

k (integer, optional)

Chapter 2. Gretl functions 231

If only the first argument is given, returns a row vector containing a random permutation of the
integers from 1 to n, without repetition of elements. If the second argument is given it must be
a positive integer in the range 1 to n; in this case the function returns a row vector containing k
integers selected randomly from 1 to n without replacement.

If you wish to sample k rows from a matrix X with n rows (without replacement), that can be
accomplished as shown below:

matrix S = X[randperm(n, k),]

And if you wish to preserve the original order of the rows in the sample:

matrix S = X[sort(randperm(n, k)),]

See also resample for resampling with replacement.

randstr

Output: string

Argument: n (integer)

Returns a random string of length n bytes. The string includes the numerals 0 to 9 and the lower-
case letters a to f with equal probability, and is interpretable as a hexadecimal integer. Intended
usage is as a unique identifier. For example, with n = 16 the string will one of over 1019 possibilities
and so unique with probability close to 1.

rank

Output: integer

Arguments: X (matrix)

tol (scalar, optional)

Returns the rank of the r ×c matrix X, numerically computed via the singular value decomposition.

The result of this operation is the number of singular values of X that are found to be numerically
greater than 0. The tol optional parameter can be used for tweaking this aspect. Singular values are
considered to be non-zero if they are greater thanmÖtolÖs, wherem is the greater of r and c and
s is the largest singular value. If the second argument is omitted tol is set to machine epsilon (see
$macheps). In some cases, you may want to set tol to a larger value (eg 1.0e-9) in order to avoid
overestimating the rank of X, which may lead to numerically unstable results.

See also svd.

ranking

Output: same type as input

Argument: y (series or vector)

Returns a series or vector with the ranks of y . The rank for observation i is the number of elements
that are less than yi plus one half the number of elements that are equal to yi. (Intuitively, you
may think of chess points, where victory gives you one point and a draw gives you half a point.)
One is added so the lowest rank is 1 instead of 0.

Formally,
rank(yi) = 1+

∑
j ̸=i

[
I(yj < yi)+ 0.5 · I(yj = yi)

]

Chapter 2. Gretl functions 232

where I denotes the indicator function.

See also sort, sortby.

rcond

Output: scalar

Argument: A (square matrix)

Returns the reciprocal condition number for A with respect to the 1-norm. In many circumstances,
this is a better measure of the sensitivity of A to numerical operations such as inversion than the
determinant.

Given that A is non-singular, we may define

κ(A) = ||A||1 · ||A−1||1

This function returns κ(A)−1.

See also det, ldet, onenorm.

Re

Output: matrix

Argument: C (complex matrix)

Returns a real matrix of the same dimensions as C, holding the real part of the input matrix. See
also Im.

readfile

Output: string

Arguments: fname (string)

codeset (string, optional)

If a file by the name of fname exists and is readable, returns a string containing the content of this
file, otherwise flags an error. If fname does not contain a full path specification, it will be looked
for in several “likely” locations, beginning with the currently set workdir. If the file in question is
gzip-compressed, this is handled transparently.

If fname starts with the identifier of a supported internet protocol (http://, ftp:// or https://),
libcurl is invoked to download the resource. See also curl for more elaborate downloading opera-
tions.

If the text to be read is not encoded in UTF-8, gretl will try recoding it from the current locale
codeset if that is not UTF-8, or from ISO-8859-15 otherwise. If this simple default does not meet
your needs you can use the optional second argument to specify a codeset. For example, if you
want to read text in Microsoft codepage 1251 and that is not your locale codeset, you should give
a second argument of "cp1251".

Examples:

string web_page = readfile("http://gretl.sourceforge.net/")
print web_page

string current_settings = readfile("@dotdir/.gretl2rc")
print current_settings

Also see the sscanf and getline functions.

Chapter 2. Gretl functions 233

regsub

Output: same type as input

Arguments: s (string, strings array or string-valued series)

match (string)

repl (string)

If s is a single string, returns a copy of s in which all occurrences of the pattern match are replaced
using repl. The arguments match and repl are interpreted as Perl-style regular expressions. If s is
an array of strings or string-valued series this operation is performed on each string in the array or
series.

See also strsub for simple substitution of literal strings.

remove

Output: integer

Argument: fname (string)

If a file by the name of fname exists and is writable by the user, this function removes (deletes) the
file and returns 0. If there is no such file or for some reason the file cannot be deleted, a non-zero
error code is returned.

If fname does not specify a full path, it is taken to be relative to the current workdir.

replace

Output: same type as input

Arguments: x (series or matrix)

find (scalar or vector)

subst (scalar or vector)

Replaces each element of x equal to the i-th element of find with the corresponding element of
subst.

If find is a scalar, subst must also be a scalar. If find and subst are both vectors, they must have
the same number of elements. But if find is a vector and subst a scalar, then all matches will be
replaced by subst.

Example:

a = {1,2,3;3,4,5}
find = {1,3,4}
subst = {-1,-8, 0}
b = replace(a, find, subst)
print a b

produces

a (2 x 3)

1 2 3
3 4 5

b (2 x 3)

-1 2 -8
-8 0 5

Chapter 2. Gretl functions 234

resample

Output: same type as input

Arguments: x (series or matrix)

blocksize (integer, optional)

draws (integer, optional)

The initial description of this function pertains to cross-sectional or time-series data; see below for
the case of panel data.

Resamples from x with replacement. In the case of a series argument, each value of the returned
series, yt , is drawn from among all the values of xt with equal probability. When a matrix argument
is given, each row of the returned matrix is drawn from the rows of x with equal probability. See
also randperm for sampling rows from a matrix without replacement.

The optional argument blocksize represents the block size for resampling by moving blocks. If this
argument is given it should be a positive integer greater than or equal to 2. The effect is that the
output is composed by random selection with replacement from among all the possible contiguous
sequences of length blocksize in the input. (In the case of matrix input, this means contiguous
rows.) If the length of the data is not an integer multiple of the block size, the last selected block
is truncated to fit.

Number of draws

By default the number of resampled observations in the output is equal to that in the input—if x is
a series, the length of the current sample range; if x is a matrix, its number of rows. In the matrix
case only this can be adjusted via the optional third argument, which must be a positive integer.
Note that if blocksize is greater than 1, draws refers to the number of individual observations, not
the number of blocks.

Panel data

If the argument x is a series and the dataset takes the form of a panel, resampling by moving blocks
is not supported. The basic form of resampling is supported, but has this specific interpretation:
the data are resampled “by individual”. Suppose you have a panel in which 100 individuals are
observed over 5 periods. Then the returned series will again be composed of 100 blocks of 5
observations: each block will be drawn with equal probability from the 100 individual time series,
with the time-series order preserved.

rgbmix

Output: array of strings

Arguments: color1 (string)

color2 (string)

f (matrix)

plot (boolean, optional)

Given two colors and a vector f of length n containing values in [0,1], this function returns an array
of n strings, element i of which holds the hexadecimal RGB code for a mixture of the form (1-f i) ×
color1 + f i × color2. The weighted average is taken over the Red, Green and Blue channels of the
input colors.

The color arguments can be specified by names known to gnuplot, or as hexadecimal values in
the form 0xrrggbb or #rrggbb. Hex values in the first of these forms may be given numerically,
otherwise strings are needed. If a non-zero value is given for the plot argument, a plot that shows
the color mixtures is produced.

Chapter 2. Gretl functions 235

This function offers a means of generating a set of related colors for plotting purposes, the primary
use case being specification of multiple bands in a plot (for example, to indicate confidence intervals
at more than one level). Three examples follow: the first produces successive lightenings of an
initial blue; the second progressive darkenings of a pink shade; and the third a transition from red
to yellow.

f = {0, 0.5, 0.75, 0.875, 0.9375}
mixes = rgbmix(0x1b43dc, "white", f, 1)
print mixes
f = {0, 0.1, 0.2, 0.3, 0.4}
rgbmix(0xefd0d3, "black", f, 1)
f = {0, 0.2, 0.4, 0.6, 0.8, 1}
rgbmix("red", "yellow", f, 1)

The output from the print command in the first example is

[1] "0x1b43dc"
[2] "0x8da1ee"
[3] "0xc6d0f6"
[4] "0xe2e8fb"
[5] "0xf1f3fd"

round

Output: same type as input

Argument: x (scalar, series or matrix)

Rounds to the nearest integer. Note that when x lies halfway between two integers, rounding is
done "away from zero", so for example 2.5 rounds to 3, but round(-3.5) gives −4. This is a
common convention in spreadsheet programs, but other software may yield different results. See
also ceil, floor, int.

rnameget

Output: string or array of strings

Arguments: M (matrix)

r (integer, optional)

If the r argument is given, retrieves the name for row r of matrix M. If M has no row names attached
the value returned is an empty string; if r is out of bounds for the given matrix an error is flagged.

If no second argument is given, retrieves an array of strings holding the row names from M, or an
empty array if the matrix does not have row names attached.

Example:

matrix A = { 11, 23, 13 ; 54, 15, 46 }
rnameset(A, "First Second")
string name = rnameget(A, 2)
print name

See also rnameset.

Chapter 2. Gretl functions 236

rnameset

Output: integer

Arguments: M (matrix)

S (array of strings or list)

Attaches names to the rows of the m × n matrix M. If S is a named list, the names are taken from
the names of the listed series; the list must have m members. If S is an array of strings, it should
contain m elements. A single string is also acceptable as the second argument; in that case it
should contain m space-separated substrings.

The nominal return value is 0 on successful completion; in case of failure an error is flagged. See
also cnameset.

Example:

matrix M = {1, 2; 2, 1; 4, 1}
strings S = array(3)
S[1] = "Row1"
S[2] = "Row2"
S[3] = "Row3"
rnameset(M, S)
print M

rows

Output: integer

Argument: X (matrix)

Returns the number of rows of the matrix X. See also cols, mshape, unvech, vec, vech.

schur

Output: complex matrix

Arguments: A (complex matrix)

&Z (reference to matrix, or null)

&w (reference to matrix, or null)

Performs the Schur decomposition of the complex matrix A, returning a complex upper triangular
matrix T . If the second argument is given and is not null it retrieves a complex matrix Z holding
the Schur vectors associated with A and T , such that A = ZTZH . If the third argument is given it
retrieves the eigenvalues of A in a complex column vector.

sd

Output: scalar or series

Arguments: x (series or list)

partial (boolean, optional)

If x is a series, returns the (scalar) sample standard deviation, skipping any missing observations.

If x is a list, returns a series y such that yt is the sample standard deviation of the values of the
series in the list at observation t. By default the standard deviation is recorded as NA if there are
any missing values at t, but if you pass a non-zero value for partial any non-missing values will be
used to form the statistic.

See also var.

Chapter 2. Gretl functions 237

sdc

Output: row vector

Arguments: X (matrix)

df (scalar, optional)

skip_na (boolean, optional)

Returns the standard deviations of the columns of X. If df is positive it is used as the divisor for the
column variances, otherwise the divisor is the number of rows in X (that is, no degrees of freedom
correction is applied). If a non-zero value is given for the optional third argument missing values
are ignored, otherwise the result is NA for any columns that contain missing values. See also meanc,
sumc.

sdiff

Output: same type as input

Argument: y (series or list)

Computes seasonal differences: yt−yt−k, where k is the periodicity of the current dataset (see $pd
or $panelpd). Starting values are set to NA.

When a list is returned, the individual variables are automatically named according to the template
sd_varname where varname is the name of the original series. The name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus constructed.

See also diff, ldiff.

seasonals

Output: list

Arguments: baseline (integer, optional)

center (boolean, optional)

Applicable only if the dataset has a time-series structure with periodicity greater than 1. Returns a
list of dummy variables coding for the period or season, named S1, S2 and so on.

The optional baseline argument can be used to exclude one period from the set of dummies. For
example, if you give a baseline value of 1 with quarterly data the returned list will hold dummies
for quarters 2, 3 and 4 only. If this argument is omitted or set to zero a full set of dummies is
generated; if non-zero, it must be an integer from 1 to the periodicity of the data.

The center argument, if non-zero, calls for the dummies to be centered; that is, to have their
population mean subtracted. For example, with quarterly data centered seasonals will have values
−0.25 and 0.75 rather than 0 and 1.

With weekly data the precise effect depends on whether the data are dated or not. If they are
dated, up to 53 seasonals are created, based on the ISO 8601 week number (see isoweek); if not, the
maximum number of series is 52 (and over a long time span the “seasonals” will drift out of phase
with the calendar year). In the dated weekly case, if you wish to create monthly seasonals this can
be done as follows:

series month = $obsminor
list months = dummify(month)

See dummify for details.

Chapter 2. Gretl functions 238

selifc

Output: matrix

Arguments: A (matrix)

b (row vector)

Selects from A only the columns for which the corresponding element of b is non-zero. b must be
a row vector with the same number of columns as A.

See also selifr.

selifr

Output: matrix

Arguments: A (matrix)

b (column vector)

Selects from A only the rows for which the corresponding element of b is non-zero. b must be a
column vector with the same number of rows as A.

See also selifc, trimr.

seq

Output: row vector

Arguments: a (scalar)

b (scalar)

k (scalar, optional)

Given only two arguments, returns a row vector filled with values from a to b with an increment of
1, or a decrement of 1 if a is greater than b.

If the third argument is given, returns a row vector containing a sequence of values starting with
a and incremented (or decremented, if a is greater than b) by k at each step. The final value is the
largest member of the sequence that is less than or equal to b (or mutatis mutandis for a greater
than b). The argument k must be positive.

See also ones, zeros.

setnote

Output: integer

Arguments: b (bundle)

key (string)

note (string)

Sets a descriptive note for the object identified by key in the bundle b. This note will be shown
when the print command is used on the bundle. This function returns 0 on success or non-zero
on failure (for example, if there is no object in b under the given key).

sgn

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the sign function of x ; that is, 0 if x is zero, 1 if x is positive, −1 if x is negative, or NA if x
is Not a Number.

Chapter 2. Gretl functions 239

simann

Output: scalar

Arguments: &b (reference to matrix)

f (function call)

maxit (integer, optional)

Implements simulated annealing, which may be helpful in improving the initialization for a numer-
ical optimization problem.

On input the first argument holds the initial value of a parameter vector and the second argument
specifies a function call which returns the (scalar) value of the maximand. The optional third
argument specifies the maximum number of iterations (which defaults to 1024). On successful
completion, simann returns the final value of the maximand and b holds the associated parameter
vector.

For more details and an example see chapter 37 of the Gretl User’s Guide. See also BFGSmax,
NRmax.

sin

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the sine of x. See also cos, tan, atan.

sinh

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the hyperbolic sine of x.

sinhx = e
x − e−x

2

See also asinh, cosh, tanh.

skewness

Output: scalar

Argument: x (series)

Returns the skewness value for the series x, skipping any missing observations.

sleep

Output: scalar

Argument: ns (scalar)

Not of any direct use for econometrics, but can be useful for testing parallelization methods. This
function simply causes the current thread to “sleep”—that is, do nothing—for ns seconds. The
argument must be non-negative. On wake-up, the function returns 0.

Chapter 2. Gretl functions 240

smplspan

Output: scalar

Arguments: startobs (string)

endobs (string)

pd (integer)

Returns the number of observations from startobs to endobs (inclusive) for time-series data with
frequency pd.

The first two arguments should be given in the form preferred by gretl for annual, quarterly or
monthly data—for example, 1970, 1970:1 or 1970:01 for each of these frequencies, respectively—
or as ISO 8601 dates, YYYY-MM-DD.

The pd argument must be 1, 4 or 12 (annual, quarterly, monthly); one of the daily frequencies
(5, 6, 7); or 52 (weekly). If pd equals 1, 4 or 12, then ISO 8601 dates are acceptable for the first
two arguments if they indicate the start of the period in question. For example, 2015-04-01 is
acceptable in place of 2015:2 to represent the second quarter of 2015.

If you already have a dataset of frequency pd in place, with a sufficient range of observations, then
the result of this function could easily be emulated using obsnum. The advantange of smplspan is
that you can calculate the number of observations without having a suitable dataset (or any dataset)
in place. An example follows:

scalar T = smplspan("2010-01-01", "2015-12-31", 5)
nulldata T
setobs 5 2010-01-01

This produces:

? scalar T = smplspan("2010-01-01", "2015-12-31", 5)
Generated scalar T = 1565
? nulldata T
periodicity: 1, maxobs: 1565
observations range: 1 to 1565
? setobs 5 2010-01-01
Full data range: 2010-01-01 - 2015-12-31 (n = 1565)

After the above, you can be confident that the last observation in the dataset created via null-
data will be 2015-12-31. Note that the number 1565 would have been rather tricky to compute
otherwise.

sort

Output: same type as input

Argument: x (series, vector or strings array)

Sorts x in ascending order. Observations with missing values are skipped if x is a series, but sorted
to the end if x is a vector. See also dsort, values. For matrices specifically, see msortby.

sortby

Output: series

Arguments: y1 (series)

y2 (series)

Chapter 2. Gretl functions 241

Returns a series containing the elements of y2 sorted by increasing value of the first argument, y1.
See also sort, ranking.

sphericorr

Output: matrix

Arguments: X (matrix)

mode (integer)

&J (reference to matrix, or null)

Calculates the spherical coordinates representation of a correlation matrix, or its inverse, depend-
ing on the value of the mode parameter.

When mode is 0 or omitted, X is assumed to be an n×n correlation matrix. The returned value will
be a vector with n(n− 1)/2 elements between 0 and π . In this mode the reference to J is ignored.

When mode is 1 or 2 the inverse transformation is performed, so X must be a vector with n(n−1)/2
elements between 0 and π . The return value is the correlation matrix R if mode equals 1, or its
Cholesky factor K if mode equals 2. The optional pointer to matrix J, if present, retrieves the
Jacobian of vech(R) or vech(K) with respect to X.

Note that the spherical coordinates representation makes it very easy to compute the log-determinant
of the correlation matrix R:

omega = sphericorr(X)
log_det = 2 * sum(log(sin(omega)))

sprintf

Output: string

Arguments: format (string)

. . . (see below)

The returned string is constructed by printing the values of the trailing arguments, indicated by the
dots above, under the control of format. It is meant to give you great flexibility in creating strings.
The format is used to specify the precise way in which you want the arguments to be printed.

In general, format must be an expression that evaluates to a string, but in most cases will just be a
string literal (an alphanumeric sequence surrounded by double quotes). Some character sequences
in the format have a special meaning: those beginning with the percent character (for the items
contained in the argument list; moreover, special characters such as the newline character are
represented via a combination beginning with a backslash.

For example, the code below

scalar x = sqrt(5)
string claim = sprintf("sqrt(%d) is (roughly) %6.4f.\n", 5, x)
print claim

will output

sqrt(5) is (roughly) 2.2361.

The expression %d in the format string indicates that we want an integer at that place in the output;
since it is the leftmost “percent” expression, it is matched to the first argument, that is 5. The

Chapter 2. Gretl functions 242

second special sequence is %6.4f, which stands for a decimal value at least 6 digits wide with
4 digits after the decimal separator. The number of such sequences must match the number of
arguments following the format string.

See the help page for the printf command for more details about the syntax you can use in format
strings.

sqrt

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the positive square root of x ; produces NA for negative values.

Note that if the argument is a matrix the operation is performed element by element. For the
“matrix square root” see cholesky.

square

Output: list

Arguments: L (list)

cross-products (boolean, optional)

Returns a list that references the squares of the variables in the list L, named on the pattern
sq_varname. If the optional second argument is present and has a non-zero value, the returned list
also includes the cross-products of the elements of L; these are named on the pattern var1_var2.
In these patterns the input variable names are truncated if need be, and the output names may be
adjusted in case of duplication of names in the returned list.

Note that dummy variables will be skipped when computing squares to avoid producing an identical
series, but their product (aka “interaction”) with other series in the input list L will be computed.

sscanf

Output: integer

Arguments: src (string or array of strings)

format (string)

. . . (see below)

Reads values from src under the control of format and assigns these values to one or more trailing
arguments, indicated by the dots above. Returns the number of values assigned. This is a simplified
version of the sscanf function in the C programming language, with an extension to the scanning
of an entire matrix; this extension is described under the leading “Scanning a matrix” below. Note
that giving an array of strings as src is acceptable only in the case of matrix scanning.

src may be either a literal string, enclosed in double quotes, or the name of a predefined string
variable. format is defined similarly to the format string in printf (more on this below). args should
be a comma-separated list containing the names of predefined variables: these are the targets of
conversion from src. (For those used to C: one can prefix the names of numerical variables with &
but this is not required.)

Literal text in format is matched against src. Conversion specifiers start with %, and recognized
conversions include %f, %g or %lf for floating-point numbers; %d for integers; %s for strings. You
may insert a positive integer after the percent sign: this sets the maximum number of characters to
read for the given conversion. Alternatively, you can insert a literal * after the percent to suppress
the conversion (thereby skipping any characters that would otherwise have been converted for the
given type). For example, %3d converts the next 3 characters in src to an integer, if possible; %*g
skips as many characters in src as could be converted to a single floating-point number.

Chapter 2. Gretl functions 243

In addition to %s conversion for strings, a simplified version of the C format %N[chars] is available.
In this format N is the maximum number of characters to read and chars is a set of acceptable
characters, enclosed in square brackets: reading stops if N is reached or if a character not in
chars is encountered. The function of chars can be reversed by giving a circumflex, ^, as the first
character; in that case reading stops if a character in the given set is found. (Unlike C, the hyphen
does not play a special role in the chars set.)

If the source string does not (fully) match the format, the number of conversions may fall short of
the number of arguments given. This is not in itself an error so far as gretl is concerned. However,
you may wish to check the number of conversions performed; this is given by the return value.
Some simple examples follow:

scanning scalar values
scalar x
scalar y
sscanf("123456", "%3d%3d", x, y)
scanning string values
string s = "one two"
string s1
string s2
sscanf(s, "%s %s", s1, s2)
print s1 s2

Scanning a matrix

Matrix scanning must be signaled by the special conversion specification “%m”. The maximum
number of rows to be read can be specified by inserting an integer between the “%” sign and the “m”
for matrix. Two variants are supported: src a single string representing a matrix, and src an array
of strings. We describe these options in turn.

If src is a single string argument the scanner reads a line of input and counts the (space- or tab-
separated) number of numeric fields. This defines the number of columns in the matrix. By default,
reading then proceeds for as many lines (rows) as contain the same number of numeric columns,
but the maximum number of rows can be limited via the optional integer value mentioned above.

If src is an array of strings the output is necessarily a column vector, each element of which is the
numerical conversion of the corresponding string, or NA if the string is not numeric. Here are some
simple examples.

scanning a single string
string s = sprintf("1 2 3 4\n5 6 7 8")
print s
matrix m
sscanf(s, "%m", m)
print m
scanning an array of strings
strings S = defarray("1.1", "2.2", "3.3", "4.4", "5.5")
sscanf(S, "%4m", m)
print m

sst

Output: scalar

Argument: y (series or vector)

Returns the sum of squared deviations from the mean for the non-missing observations in the
series or vector y. See also var.

Chapter 2. Gretl functions 244

stack

Output: series

Arguments: L (list)

n (integer)

offset (integer, optional)

Designed for manipulation of data into the stacked time series format required by gretl for panel
data. The return value is a series obtained by stacking “vertically” n observations from each series
in the list L. By default the first n observations are used (corresponding to offset = 0) but the starting
point can be shifted by supplying a positive value for offset. If the resulting series is longer than
the existing dataset, observations are added as needed.

This function can handle the case where a data file holds side-by-side time series for a number of
cross-sectional units, as well as the case where time runs horizontally and each row represents a
cross-sectional unit.

See the section titled “Panel data specifics” in chapter 4 of the Gretl User’s Guide for details and
examples of usage.

stdize

Output: same type as input

Arguments: X (series, list or matrix)

v (integer, optional)

skip_na (boolean, optional)

By default, returns a standardized version of the series, list or matrix: the input is centered and
divided by its sample standard deviation (with a degrees of freedom correction of 1). Results are
computed by column in the case of matrix input.

The optional second argument can be used to inflect the result. A non-negative value of v sets
the degrees of freedom correction used in the standard deviation, so v = 0 gives the maximum
likelihood estimator. As a special case, if v equals −1 only centering is performed.

By default missing values are automatically skipped in the case of series or list input but not for
matrix input. To have missing values ignored in the matrix case, supply a non-zero value for
skip_na.

strfday

Output: depends on input

Arguments: epoch_day (scalar, series or matrix)

format (string, optional)

This function works like strftime, converting from a numeric value to a string governed by format,
except that the input is an “epoch day”, for the definition of which see epochday. Since the resolu-
tion is daily, only date-related formats are handled; time-related formats give undefined results.

If the second argument is omitted the format defaults to ISO 8601 extended, YYYY-MM-DD.

strftime

Output: depends on input

Arguments: tm (scalar, series or matrix)

format (string, optional)

offset (scalar, optional)

Chapter 2. Gretl functions 245

The argument tm is taken to give “Unix time”, the number of seconds since the start of the year
1970 according to UTC, and the return value is a string giving the corresponding date and/or
time—either in a format specified via the optional second argument or, by default, the “preferred
date and time representation for the current locale” as determined by the system C library. See
below for more on the format specification.

The optional offset argument can be used to specify an offset in seconds relative to UTC, thus
selecting a time zone other than the default, which is always local time. For example an offset of
3600 selects Central European Time, while 0 selects GMT. The absolute value of offset should not
exceed 86400 (24 hours).

The specific type returned depends on that of tm: if tm is a scalar, vector, or series the output is,
respectively, a single string, an array of strings, or a string-valued series.

Values of tm suitable for use with this function may be obtained via the $now accessor or the
strptime function.

Note that while tm is taken as relative to UTC the output of this function is by default “local”,
relative to the time-zone setting on the host computer. A given tm will therefore show a different
time, and perhaps a different date, in different time zones. But if you want a string representing
UTC rather than local time, gretl can do that; see below.

Format options

The standard formatting options may be found by consulting the strftime manual page, on sys-
tems which have such pages, or via one of the many websites which present relevant information,
such as https://devhints.io/strftime. In addition to the standard formats gretl recognizes a
special option: if format is just “8601”, date and time are shown in ISO 8601 format.

stringify

Output: integer

Arguments: y (series)

S (array of strings)

Provides a means of defining string values for the series y. Two conditions must be satisfied for
this to work: the target series must have nothing but integer values, none of them less than 1, and
the array S must have at least n elements where n is the largest value in y. In addition each element
of S must be valid UTF-8. If any of these conditions is not met, an error is flagged. The nominal
return value is 0 on successful completion.

An alternative to stringify that may be useful in some contexts is direct assignment from an
array of strings to a series: this creates a series whose values are taken from the array in sequence;
the number of elements in the array must equal either the full length of the dataset or the length
of the current sample range, and values may be repeated as required.

See also strvals, strvsort.

strlen

Output: integer

Argument: s (string or array of strings)

If s is a single string, returns the number of UTF-8 characters it contains. Note that this will be less
than the number of bytes if the string contains any multi-byte (non-ASCII) characters. If you want
the number of bytes you can use the nelem function. For example:

string s = "¡Olé!"
printf "strlen(s) = %d, nelem(s) = %d\n", strlen(s), nelem(s)

https://devhints.io/strftime

Chapter 2. Gretl functions 246

should return

strlen(s) = 5, nelem(s) = 7

If the argument is an array of strings the return value is a column vector holding the number of
characters in each string. A string-valued series is also an acceptable argument: in this case the
return value is a series holding the length of the string values over the current sample range.

strncmp

Output: integer

Arguments: s1 (string)

s2 (string)

n (integer, optional)

Compares the two string arguments and returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2, up to the first n
characters. If n is omitted the comparison proceeds as far as possible.

Note that if you just want to compare two strings for equality, that can be done without using a
function, as in if (s1 == s2) ...

strpday

Output: depends on input

Arguments: s (string, strings array or string-valued series)

format (string, optional)

This function works just like strptime, except that the return value is an “epoch day” value, for the
definition of which see epochday. Since the resolution is daily, any time-of-day information in s is
ignored.

strptime

Output: depends on input

Arguments: s (string, strings array or string-valued series)

format (string, optional)

This function is the converse of strftime; it parses one or more date/time strings using the spec-
ified format and returns the number of seconds since the start of 1970 according to Coordinated
Universal Time (UTC). The specific type of the return value depends on that of s: if s is a string,
strings array, or string-valued series the output is, respectively, a scalar, a column vector, or a
numeric series.

If format is omitted, it defaults to ISO 8601 “extended”, YYYY-MM-DD (which translates to “%Y-%m-%d”
as a strptime format).

As a special case, the first argument may be given as an 8-digit integer conforming to the ISO 8601
“basic” date format, YYYYMMDD (or a vector or series containing such values). In that case format
should be omitted.

Note that the first argument to this function is taken as relative to the time-zone setting on the
host computer. So for example, the call

strptime("13/02/2009 23:31.30", "%d/%m/%Y %H:%M.%S")

Chapter 2. Gretl functions 247

will produce 1234567890 on output if your system time is set to UTC but if you’re in the Central
European time zone (UTC+01:00) the output will be 1234564290.

The format options may be found by consulting the strptime manual page, on systems which
have such pages, or via one of the many websites which present relevant information, such as
http://man7.org/linux/man-pages/man3/strptime.3.html.

The example below shows how one can convert date information from one format to another.

scalar tm = strptime("Thursday 02/07/19", "%A %m/%d/%y")
eval strftime(tm) # default output
eval strftime(tm, "%B %d, %Y")

On the East Coast of the USA the result is

Thu 07 Feb 2019 12:00:00 AM EST
February 07, 2019

strsplit

Output: string or array of strings

Arguments: s (string)

sep (string, optional)

i (integer, optional)

In basic usage, with a single argument, returns the array of strings that results from the splitting
of s on white space (that is on any combination of the space, tab and/or newline characters).

The optional second argument can be used to specify the separator used for splitting s. For example

string basket = "banana,apple,jackfruit,orange"
strings S = strsplit(basket, ",")

will split the input into an array of four strings using comma as separator.

The backslash-escape sequences “\n”, “\r” and “\t” are taken to represent newline, carriage return
and tab, respectively, in the optional sep argument. If you wish to include a literal backslash as a
separator character you should double it, as in “\\”. Example:

string s = "c:\fiddle\sticks"
strings S = strsplit(s, "\\")

Regardless of the separator, the members of the returned array are trimmed of any leading or
trailing white space. Correspondingly, if sep contains non-whitespace characters then it is stripped
of any leading or trailing space.

If an integer value greater than zero is given as the third argument the return value is a single
string, namely the (1-based) element i of the array that would otherwise be produced. If i is less
than 1 that provokes an error, but if i is greater than the implied number of elements an empty
string is returned.

http://man7.org/linux/man-pages/man3/strptime.3.html

Chapter 2. Gretl functions 248

strstr

Output: string

Arguments: s1 (string)

s2 (string)

ign_case (boolean, optional)

Searches s1 for an occurrence of the string s2. If a match is found, returns a copy of the portion of
s1 that starts with s2, otherwise returns an empty string.

Example:

string s1 = "Gretl is an econometrics package"
string s2 = strstr(s1, "an")
print s2

If the optional argument ign_case is nonzero, the search is case-insensitive. For example,

strstr("Chicago", "c")

returns “cago”, but

strstr("Chicago", "c", 1)

returns “Chicago”.

If you just wish to find out if s1 contains s2 (boolean test), see instring.

strstrip

Output: string

Argument: s (string)

Returns a copy of the argument s from which leading and trailing white space have been removed.

Example:

string s1 = " A lot of white space. "
string s2 = strstrip(s1)
print s1 s2

strsub

Output: same type as input

Arguments: s (string, strings array or string-valued series)

find (string)

subst (string)

If s is a single string, returns a copy of s in which all occurrences of find are replaced by subst. If s
is an array of strings or string-valued series this operation is performed on each string in the array
or series. See also regsub for more complex string replacement via regular expressions.

Example:

Chapter 2. Gretl functions 249

string s1 = "Hello, Gretl!"
string s2 = strsub(s1, "Gretl", "Hansl")
print s2

strvals

Output: array of strings

Arguments: y (series)

subsample (boolean, optional)

If the series y is string-valued, returns by default an array containing all its distinct values (irre-
spective of the current setting of the sample range), ordered by the associated numerical values
starting at 1. If the dataset is currently subsampled you can give a non-zero value for the optional
second argument to obtain an array holding just the string values present in the subsample.

If y is not string-valued an empty strings array is returned. See also stringify.

An alternative to strvals that may be useful in some contexts is direct assignment of a string-
valued series to an array of strings: this provides not just the distinct values, but all values of the
series in the current sample range.

strvsort

Output: integer

Arguments: y (series)

S (array of strings, optional)

Carries out one or other of two sorts of rearrangment of the series y, which must be string-valued.
The nominal return value is 0 on successful completion.

Method 1: If the second argument is not given, the effect is to sort y in this sense: the distinct
string values are alphabetized and then the series is recoded such that 1 is assigned for the first
of the ordered strings, 2 for the second, and so on. This can be useful, among other reasons, for
ensuring a uniform encoding for multiple series that share the same set of string values.

Method 2: If the second argument is given, it must be an array which contains exactly the distinct
string values of y (which can be found via strvals), but put into a preferred order. Then the effect
is to recode the series such that value 1 is assigned for the first string in S, value 2 for the second,
and so on. This can be useful for ensuring that the numeric codes “make sense” when string values
can be thought of as naturally ordered.

The primary use case for these methods is the handling of string-valued series imported from
third-party sources such as comma-separated files. For such data, gretl assigns numeric codes
based simply on the order of occurrence of the strings across the rows of the file. So in a series
with values low, middle and high, high will be assigned code 1 if it happens to occur first, rather
than 3, which would clearly be more “natural”. This can be fixed using Method 2. Moreover, if two
or more series share the same string values, they will be encoded differently unless their distinct
values happen to appear in the same order in the data file. This could be fixed by either method.

See also stringify, strvals.

substr

Output: same type as input

Arguments: s (string, strings array or string-valued series)

start (integer)

end (integer)

Chapter 2. Gretl functions 250

If s is a single string, returns the substring of s from the character with (1-based) index start to that
with index end, inclusive, or from start to the end of s if end is −1. If the argument is an array of
strings or string-valued series, this operation is performed on each string in the array or series.

For example, the code below

string s1 = "Hello, Gretl!"
string s2 = substr(s1, 8, 12)
print s2

gives:

? print s2
Gretl

It should be noted that in some cases you may be willing to trade clarity for conciseness, and use
slicing and increment operators, as in

string s1 = "Hello, Gretl!"
string s2 = s1[8:12]
string s3 = s1 + 7
print s2
print s3

which would give you

? print s2
Gretl
? print s3
Gretl!

sum

Output: scalar or series

Arguments: x (series, matrix or list)

partial (boolean, optional)

If x is a series, returns the (scalar) sum of the non-missing observations in x. See also sumall.

If x is a matrix, returns the sum of the elements of the matrix.

If x is a list, returns a series y such that yt is the sum of the values of the variables in the list at
observation t. By default the sum is recorded as NA if there are any missing values at t, but if you
pass a non-zero value for partial any non-missing values will be used to form the sum.

sumall

Output: scalar

Argument: x (series)

Returns the sum of the observations of x over the current sample range, or NA if there are any
missing values. Use sum if you want missing values to be skipped.

Chapter 2. Gretl functions 251

sumc

Output: row vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the sums of the columns of X. If a non-zero value is given for the optional second argument
missing values are ignored, otherwise the result is NA for any columns that contain missing values.
See also meanc, sumr.

sumr

Output: column vector

Arguments: X (matrix)

skip_na (boolean, optional)

Returns the sums of the rows of X. If a non-zero value is given for the optional second argument
missing values are ignored, otherwise the result is NA for any rows that contain missing values. See
also meanr, sumc.

svd

Output: row vector

Arguments: X (matrix)

&U (reference to matrix, or null)

&V (reference to matrix, or null)

Performs the singular values decomposition of the r × c matrix X:

X = U


σ1

σ2

. . .

σn,

V

where n = min(r , c). U is r ×n and V is n× c, with U ′U = I and VV ′ = I.
The singular values are returned in a row vector. The left and/or right singular vectors U and V
may be obtained by supplying non-null values for arguments 2 and 3, respectively. For any matrix
A, the code

s = svd(A, &U, &V)
B = (U .* s) * V

should yield B identical to A (apart from machine precision).

See also eigengen, eigensym, qrdecomp.

svm

Output: series

Arguments: L (list)

bparms (bundle)

bmod (reference to bundle, optional)

bprob (reference to bundle, optional)

Chapter 2. Gretl functions 252

This function enables the training of, and prediction based on, an SVM (a Support Vector Machine),
using LIBSVM as back-end. The list argument L should include the dependent variable followed
by the independent variables and the bparms bundle is used to pass options to the SVM mecha-
nism. The return value is a series holding the SVM’s predictions. The two optional bundle-pointer
argument can be used to retrieve additional information after training and/or prediction.

For details, please see the PDF documentation for gretl + SVM.

tan

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the tangent of x. See also atan, cos, sin.

tanh

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the hyperbolic tangent of x.

tanhx = e
2x − 1
e2x + 1

See also atanh, cosh, sinh.

tdisagg

Output: matrix

Arguments: Y (series or matrix)

X (series, list or matrix, optional)

s (scalar)

opts (bundle, optional)

results (bundle, optional)

Performs temporal disaggregation (conversion to higher frequency) of the time-series data in Y. The
argument s gives the expansion factor (for example, 3 for quarterly to monthly). The argument X
may contain one or more covariates at the higher frequency to aid in the disaggregation. Several
options may be passed in opts, and details of the disaggregation may be retrieved via results.

See chapter 9 of the Gretl User’s Guide for details.

toepsolv

Output: column vector

Arguments: c (vector)

r (vector)

b (vector)

&det (reference to scalar, optional)

Solves a Toeplitz system of linear equations, that is Tx = b where T is a square matrix whose
element T i,j equals ci−j for i ≥ j and r j−i for i ≤ j. Note that the first elements of c and r must be
equal, otherwise an error is returned. Upon successful completion, the function returns the vector
x.

Chapter 2. Gretl functions 253

The algorithm used here takes advantage of the special structure of the matrix T , which makes it
much more efficient than other unspecialized algorithms, especially for large problems. Warning:
in certain cases, the function may spuriously issue a singularity error when in fact the matrix T is
nonsingular; this problem, however, cannot arise when T is positive definite.

If the optional argument det is supplied (in pointer form), it will contain on exit the determinant of
T . For example, the code:

A = unvech({3;2;1;3;2;3}) # Build a 3x3 Toeplitz matrix
x = ones(3,1) # and a 3x1 vector
print A x
eval A\x # solution via generic inversion
eval det(A) # print the determinant
a = A[1,]
d = 0
eval toepsolv(a, a, x, &d) # use the dedicated function
print d

produces

A (3 x 3)

3 2 1
2 3 2
1 2 3

x (3 x 1)

1
1
1

0.25000
-3.3307e-17

0.25000

8
0.25000

2.7756e-17
0.25000

d = 8.0000000

tolower

Output: same type as input

Argument: s (string, strings array or string-valued series)

If s is a single string, returns a copy of s in which any upper-case characters are converted to lower
case. If s is an array of strings or string-valued series this operation is performed on each string in
the array or series.

Example:

string s1 = "Hello, Gretl!"
string s2 = tolower(s1)
print s2

Chapter 2. Gretl functions 254

toupper

Output: same type as input

Argument: s (string, strings array or string-valued series)

If s is a single string, returns a copy of s in which any lower-case characters are converted to upper
case. If s is an array of strings or string-valued series this operation is performed on each string in
the array or series.

Examples:

string s1 = "Hello, Gretl!"
string s2 = toupper(s1)
print s2

tr

Output: scalar

Argument: A (square matrix)

Returns the trace of the square matrix A, that is, the sum of its diagonal elements. See also diag.

transp

Output: matrix

Argument: X (matrix)

Returns the transpose of X. Note: this is rarely used; in order to get the transpose of a matrix, in
most cases you can just use the prime operator: X’.

trigamma

Output: same type as input

Argument: x (scalar, series or matrix)

Returns the trigamma function of x, that is d2

dx2 log Γ(x).
See also lngamma, digamma.

trimr

Output: matrix

Arguments: X (matrix)

ttop (integer)

tbot (integer)

Returns a matrix that is a copy of X with ttop rows trimmed at the top and tbot rows trimmed at
the bottom. The latter two arguments must be non-negative, and must sum to less than the total
rows of X.

See also selifr.

typename

Output: string

Argument: expr (string)

Chapter 2. Gretl functions 255

A convenience function which combines typeof and typestr, with a little value added. Basically, the
following two statements are equivalent

eval typestr(typeof(x))
eval typename(x)

except that if expr names an array, typename returns the specific type of the array, as in

strings S = defarray("foo", "bar", "baz")
eval typestr(typeof(S)) # gives "array"
eval typename(S) # gives "strings"

typeof

Output: integer

Argument: expr (string)

Returns a numeric code indicating the type of expr, if it names a currently defined variable, specifies
a sub-object such as a bundle member or array element, or is a valid expression that could stand
as the right-hand side of an assignment statement. The codes are 1 for scalar, 2 for series, 3 for
matrix, 4 for string, 5 for bundle, 6 for array and 7 for list. A return value of 0 indicates that expr
names no existing object, or more generally that an assignment with expr on the right-hand side
would fail.

A few examples follow:

strings S = defarray("foo", "bar")
eval typeof(S) # gives 6 (array)
eval typeof(S[1]) # gives 4 (string)
eval typeof(S[7]) # gives 0 (out of bounds)
eval typeof(S[x]) # gives 0 (invalid index)
eval typeof(1+1) # gives 1 (scalar)
eval typeof(sqrt("foo")) # gives 0 (invalid)

The function typestr may be used to get the string corresponding to the return value from typeof,
though if you just want the string result typename may be a more convenient alternative.

typestr

Output: string

Argument: typecode (integer)

Given a gretl type code (for example, obtained via typeof or inbundle), returns a string giving the
name of the type. The mapping from codes to strings is: 1 = “scalar”, 2 = “series”, 3 = “matrix”, 4 =
“string”, 5 = “bundle”, 6 = “array”, 7 = “list”, and 0 = “null”.

See also typename for an alternative.

uniform

Output: series

Arguments: a (scalar)

b (scalar)

Chapter 2. Gretl functions 256

Generates a series of uniform pseudo-random variates in the interval (a, b), or, if no arguments are
supplied, in the interval (0,1). The algorithm used by default is the SIMD-oriented Fast Mersenne
Twister developed by Saito and Matsumoto (2008).

See also randgen, normal, mnormal, muniform.

uniq

Output: column vector

Argument: x (series or vector)

Returns a vector containing the distinct non-missing elements of x, not sorted but in their order of
appearance. See values for a variant that sorts the elements.

unvech

Output: square matrix

Arguments: v (vector)

d (scalar, optional)

If the second argument is omitted, returns an n×n symmetric matrix obtained by rearranging the
elements of v . The number of elements in v must be a triangular integer—i.e., a number k such
that an integer n exists with the property k = n(n+ 1)/2. This is the inverse of the function vech.

If the argument d is given, the function returns an (n+ 1)× (n+ 1) matrix with the extra-diagonal
entries filled with the elements of v as above. All the elements of the diagonal are set to d instead.

Example:

v = {1;2;3}
matrix one = unvech(v)
matrix two = unvech(v, 99)
print one two

returns

one (2 x 2)

1 2
2 3

two (3 x 3)

99 1 2
1 99 3
2 3 99

See also mshape, vech.

upper

Output: square matrix

Argument: A (square matrix)

Returns an n×n upper triangular matrix B for which Bij = Aij if i ≤ j and 0 otherwise.

See also lower.

Chapter 2. Gretl functions 257

urcpval

Output: scalar

Arguments: tau (scalar)

n (integer)

niv (integer)

itv (integer)

P -values for the test statistic from the Dickey–Fuller unit-root test and the Engle–Granger cointe-
gration test, as per MacKinnon (1996).

The arguments are as follows: tau denotes the test statistic; n is the number of observations (or 0
for an asymptotic result); niv is the number of potentially cointegrated variables when testing for
cointegration (or 1 for a univariate unit-root test); and itv is a code for the model specification: 1 for
no constant, 2 for constant included, 3 for constant and linear trend, 4 for constant and quadratic
trend.

Note that if the test regression is “augmented” with lags of the dependent variable, then you should
give an n value of 0 to get an asymptotic result.

See also pvalue, qlrpval.

values

Output: column vector

Argument: x (series or vector)

Returns a vector containing the distinct elements of x sorted in ascending order, ignoring any
missing values. If you wish to truncate the values to integers before applying this function, use the
expression values(int(x)).

See also uniq, dsort, sort.

var

Output: scalar or series

Arguments: x (series or list)

partial (boolean, optional)

If x is a series, returns the (scalar) sample variance, skipping any missing observations.

If x is a list, returns a series y such that yt is the sample variance of the values of the variables in
the list at observation t. By default the variance is recorded as NA if there are any missing values
at t, but if you pass a non-zero value for partial any non-missing values will be used to form the
statistic.

In each case the sum of squared deviations from the mean is divided by (n − 1) for n > 1. Otherwise
the variance is given as zero if n = 1, or as NA if n = 0.

See also sd.

varname

Output: string

Argument: v (integer or list)

If given an integer argument, returns the name of the variable with ID number v, or generates an
error if there is no such variable.

If given a list argument, returns a string containing the names of the variables in the list, separated
by commas. If the supplied list is empty, so is the returned string. To get an array of strings as

Chapter 2. Gretl functions 258

return value, use varnames instead.

Example:

open broiler.gdt
string s = varname(7)
print s

varnames

Output: array of strings

Argument: L (list)

Returns an array of strings containing the names of the variables in the list L. If the supplied list is
empty, so is the returned array.

Example:

open keane.gdt
list L = year wage status
strings S = varnames(L)
eval S[1]
eval S[2]
eval S[3]

varnum

Output: integer

Argument: varname (string)

Returns the ID number of the variable called varname, or NA is there is no such variable.

varsimul

Output: matrix

Arguments: A (matrix)

U (matrix)

y0 (matrix)

Simulates a p-order n-variable VAR, that is yt =
∑p
i=1Aiyt−i + ut . The coefficient matrix A is

composed by stacking the Ai matrices horizontally; it is n × np, with one row per equation. This
corresponds to the first n rows of the matrix $compan provided by the var and vecm commands.

The ut vectors are contained (as rows) in U (T ×n). Initial values are in y0 (p ×n).

If the VAR contains deterministic terms and/or exogenous regressors, these can be handled by
folding them into the U matrix: each row of U then becomes ut = B′xt + et .
The output matrix has T + p rows and n columns; it holds the initial p values of the endogenous
variables plus T simulated values.

See also $compan, var, vecm.

vec

Output: column vector

Argument: X (matrix)

Stacks the columns of X as a column vector. See also mshape, unvech, vech.

Chapter 2. Gretl functions 259

vech

Output: column vector

Arguments: A (square matrix)

omit-diag (boolean, optional)

This function rearranges the the elements of A on and above the diagonal into a column vector,
unless the omit-diag is given a non-zero value, in which case only the entries above the diagonal
are considered.

Typically, this function is used on symmetric matrices, in which case it can be undone by the
function unvech. If the input matrix is not symmetric and it’s the lower triangle that contains
the “right” values, vech(A’) will give the desired answer (its elements may have to be re-ordered,
however). See also vec.

vma

Output: matrix

Arguments: A (matrix)

K (matrix, optional)

horizon (integer, optional)

This function yields the VMA representation for a VAR system. If yt =
∑p
i=1Aiyt−i + ut , where

ut are the one-step-ahead prediction errors, the corresponding VMA representation is yt = C0et +
C1et−1 + The relationship between the forecast errors ut and the structural shocks et is given
by ut = Ket . (Note that C0 = K.)

The coefficient matrix A is composed by stacking the Ai matrices horizontally; it is n×np, with one
row per equation. This corresponds to the first n rows of the matrix $compan provided by gretl’s
var and vecm commands. The K matrix is optional, and defaults to the identity matrix if omitted.

The returned matrix will have horizon rows and n2 columns: its i-th row contains Ci−1 in vectorized
form. The horizon value defaults to 24 if omitted.

See also irf.

weekday

Output: same type as input

Arguments: year (scalar or series)

month (scalar or series)

day (scalar or series)

Returns the day of the week (from Sunday = 0 to Saturday = 6) for the date(s) specified by the three
arguments, or NA if the date is invalid. Note that all three arguments must be of the same type,
either scalars (integers) or series.

An alternative call is also supported: if a single argument is given, it is taken to be a date (or series
of dates) in ISO 8601 “basic” numeric format, YYYYMMDD. So the following two calls produce the
same result, namely 2 (Tuesday).

eval weekday(1990, 5, 1)
eval weekday(19900501)

A common alternative numbering for days of the week runs from Monday = 1 to Sunday = 7. If you
have a series named wd obtained via weekday and you want to convert to the alternative you can
do

Chapter 2. Gretl functions 260

altwd = wd == 0 ? 7 : wd

Note that if you simply add 1 to wd you get a numbering that’s valid but non-standard, namely
Sunday = 1 to Saturday = 7.

wmean

Output: series

Arguments: Y (list)

W (list)

partial (boolean, optional)

Returns a series y such that yt is the weighted mean of the values of the variables in list Y at
observation t, the respective weights given by the values of the variables in list W at t. The weights
can therefore be time-varying. The lists Y and W must be of the same length and the weights must
be non-negative.

By default the result is NA if any values are missing at observation t, but if you pass a non-zero
value for partial any non-missing values will be used.

See also wsd, wvar.

wsd

Output: series

Arguments: Y (list)

W (list)

partial (boolean, optional)

Returns a series y such that yt is the weighted sample standard deviation of the values of the
variables in list Y at observation t, the respective weights given by the values of the variables in list
W at t. The weights can therefore be time-varying. The lists Y and W must be of the same length
and the weights must be non-negative.

By default the result is NA if any values are missing at observation t, but if you pass a non-zero
value for partial any non-missing values will be used.

See also wmean, wvar.

wvar

Output: series

Arguments: X (list)

W (list)

partial (boolean, optional)

Returns a series y such that yt is the weighted sample variance of the values of the variables in
list X at observation t, the respective weights given by the values of the variables in list W at t.
The weights can therefore be time-varying. The lists Y and W must be of the same length and the
weights must be non-negative.

By default the result is NA if any values are missing at observation t, but if you pass a non-zero
value for partial any non-missing values will be used.

The weighted sample variance is computed as

s2
w =

n′

n′ − 1

∑n
i=1wi(xi − x̄w)2∑n

i=1wi

Chapter 2. Gretl functions 261

where n′ is the number of non-zero weights and x̄w is the weighted mean.

See also wmean, wsd.

xmlget

Output: string

Arguments: buf (string)

path (string or array of strings)

&matches (reference to scalar, optional)

The argument buf should be an XML buffer, as may be retrieved from a suitable website via the
curl function (or read from file via readfile), and the path argument should be either a single XPath
specification or an array of such.

This function returns a string representing the data found in the XML buffer at the specified path. If
multiple nodes match the path expression the items of data are printed one per line in the returned
string. If an array of paths is given as the second argument the returned string takes the form of
a comma-separated buffer, with column i holding the matches from path i. In this case if a string
obtained from the XML buffer contains any spaces or commas it is wrapped in double quotes.

By default an error is flagged if path is not matched in the XML buffer, but this behavior is modified
if you pass the third, optional argument: in that case the argument retrieves a count of the matches
and an empty string is returned if there are none. Example call:

ngot = 0
ret = xmlget(xbuf, "//some/thing", &ngot)

However, an error is still flagged in case of a malformed query.

A good introduction to XPath usage and syntax can be found at https://www.w3schools.com/
xml/xml_xpath.asp. The back-end for xmlget is provided by the xpath module of libxml2, which
supports XPath 1.0 but not XPath 2.0.

See also jsonget, readfile.

zeromiss

Output: same type as input

Argument: x (scalar, series or matrix)

Converts zeros to NAs. If x is a series or matrix, the conversion is done element by element. See
also missing, misszero, ok.

zeros

Output: matrix

Arguments: r (integer)

c (integer, optional)

Outputs a zero matrix with r rows and c columns. If omitted, the number of columns defaults to 1
(column vector). See also ones, seq.

https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp

Chapter 3

Operators

3.1 Precedence

Table 3.1 lists the operators available in gretl in order of decreasing precedence. That is, the opera-
tors on the first row have the highest precedence, those on the second row have the second highest,
and so on, while operators on any given row have equal precedence. Where successive operators
have the same precedence the order of evaluation is in general left to right. The exceptions are
exponentiation and matrix transpose-multiply. The expression a^b^c is equivalent to a^(b^c), not
(a^b)^c, and similarly A’B’C’ is equivalent to A’(B’(C’)).

Table 3.1: Operator precedence

() [] . {}

! ++ -- ^ ’

* / % \ **

+ - ~ |

> < >= <= ..

== !=

&&

||

?:

In addition to the basic forms shown in the Table, several operators also have a “dot form” (as in
“.+” which is read as “dot plus”). These are element-wise versions of the basic operators, for use
with matrices exclusively; they have the same precedence as their basic counterparts. The available
dot operators are as follows.

.^ .* ./ .+ .- .> .< .>= .<= .=

Each basic operator is shown once again in the following list along with a brief account of its
meaning. Apart from the first three sets of grouping symbols, all operators are binary except
where noted.

() Function call

[] Subscripting

. Bundle membership (see below)

{} Matrix definition

! Unary logical NOT

++ Increment (unary)

-- Decrement (unary)

^ Exponentiation

262

Chapter 3. Operators 263

’ Matrix transpose (unary) or transpose-multiply (binary)

* Multiplication

/ Division, matrix “right division”

% Modulus

\ Matrix “left division”

** Kronecker product

+ Addition

- Subtraction

~ Matrix horizontal concatenation

| Matrix vertical concatenation

> Boolean greater than

< Boolean less than

>= Greater than or equal

<= Less than or equal

.. Range from–to (in constructing lists)

== Boolean equality test

!= Boolean inequality test

&& Logical AND

|| Logical OR

?: Conditional expression

The interpretation of “.” as the bundle membership operator is confined to the case where it is
immediately preceded by the identifier for a bundle, and immediately followed by a valid identifier
(key).

Details on the use of the matrix-related operators (including the dot operators) can be found in the
chapter on matrices in the Gretl User’s Guide.

3.2 Assignment

The operators mentioned above are all intended for use on the right-hand side of an expression
which assigns a value to a variable (or which just computes and displays a value—see the eval
command). In addition we have the assignment operator itself, “=”. In effect this has the lowest
precedence of all: the entire right-hand side is evaluated before assignment takes place.

Besides plain “=” several “inflected” versions of assignment are available. These may be used only
when the left-hand side variable is already defined. The inflected assignment yields a value that is
a function of the prior value on the left and the computed value on the right. Such operators are
formed by prepending a regular operator symbol to the equals sign. For example,

y += x

The new value assigned to y by the statement above is the prior value of y plus x. The other
available inflected operators, which work in an exactly analogous fashion, are as follows.

-= *= /= %= ^= ~= |=

In addition, a special form of inflected assignment is provided for matrices. Say matrix M is 2×2. If
you execute M = 5 this has the effect of replacing M with a 1× 1 matrix with single element 5. But
if you do M .= 5 this assigns the value 5 to all elements of M without changing its dimensions.

Chapter 3. Operators 264

3.3 Increment and decrement

The unary operators ++ and -- follow their operand,1 which must be a variable of scalar type. Their
simplest use is in stand-alone expressions, such as

j++ # shorthand for j = j + 1
k-- # shorthand for k = k - 1

However, they can also be embedded in more complex expressions, in which case they first yield the
original value of the variable in question, then have the side-effect of incrementing or decrementing
the variable’s value. For example:

scalar i = 3
k = i++
matrix M = zeros(10, 1)
M[i++] = 1

After the second line, k has the value 3 and i has value 4. The last line assigns the value 1 to
element 4 of matrix M and sets i = 5.

Warning: as in the C programming language, the unary increment or decrement operator should be
not be applied to a variable in conjunction with regular reference to the same variable in a single
statement. This is because the order of evaluation is not guaranteed, giving rise to ambiguity.
Consider the following:

M[i++] = i # don’t do this!

This is supposed to assign the value of i to M[i], but is it the original or the incremented value?
This is not actually defined.

1The C programming language also supports prefix versions of ++ and --, which increment or decrement their operand
before yielding its value. Only the postfix form is supported by gretl.

Chapter 4

Comments in scripts

When a script does anything non-obvious, it’s a good idea to add comments explaining what’s
going on. This is particularly useful if you plan to share the script with others, but it’s also useful
as a reminder to yourself — when you revisit a script some months later and wonder what it was
supposed to be doing.

The comment mechanism can also be helpful when you’re developing a script. There may come a
point where you want to execute a script, but bypass execution of some portion of it. Obviously you
could delete the portion you wish to bypass, but rather than lose that section you can “comment it
out” so that it is ignored by gretl.

Two sorts of comments are supported by gretl. The simpler one is this:

• If a hash mark, #, is encountered in a gretl script, everything from that point to the end of the
current line is treated as a comment, and ignored.

If you wish to “comment out” several lines using this mode, you’ll have to place a hash mark at the
start of each line.

The second sort of comment is patterned after the C programming language:

• If the sequence /* is encountered in a script, all the following input is treated as a comment
until the sequence */ is found.

Comments of this sort can extend over several lines. Using this mode it is easy to add lengthy
explanatory text, or to get gretl to ignore substantial blocks of commands. As in C, comments of
this type cannot be nested.

How do these two comment modes interact? You can think of gretl as starting at the top of a script
and trying to decide at each point whether it should or should not be in “ignore mode”. In doing so
it follows these rules:

• If we’re not in ignore mode, then # puts us into ignore mode till the end of the current line.

• If we’re not in ignore mode, then /* puts us into ignore mode until */ is found.

This means that each sort of comment can be masked by the other.

• If /* follows # on a given line which does not already start in ignore mode, then there’s
nothing special about /*, it’s just part of a #-style comment.

• If # occurs when we’re already in ignore mode, it is just part of a comment.

A few examples follow.

/* multi-line comment
hello
hello */

265

Chapter 4. Comments in scripts 266

In the above example the hash marks are not special; in particular the hash mark on the third line
does not prevent the multi-line comment from terminating at */.

single-line comment /* hello

Assuming we were not in ignore mode before the line shown above, it is just a single-line comment:
the /* is masked, and does not open a multi-line comment.

You can append a comment to a command:

ols 1 0 2 3 # estimate the baseline model

Example of “commenting out”:

/*
let’s skip this for now
ols 1 0 2 3 4
omit 3 4
*/

Chapter 5

Options, arguments and path-searching

5.1 Invoking gretl

gretl (under MS Windows, gretl.exe)1.

— Opens the program and waits for user input.

gretl datafile

— Starts the program with the specified datafile in its workspace. The data file may be in any of
several formats (see the Gretl User’s Guide); the program will try to detect the format of the file and
treat it appropriately. See also Section 5.4 below for path-searching behavior.

gretl --help (or gretl -h)

— Print a brief summary of usage and exit.

gretl --version (or gretl -v)

— Print version identification for the program and exit.

gretl --english (or gretl -e)

— Force use of English instead of translation.

gretl --run scriptfile (or gretl -r scriptfile)

— Start the program and open a window displaying the specified script file, ready to run. See
Section 5.4 below for path-searching behavior.

gretl --db database (or gretl -d database)

— Start the program and open a window displaying the specified database. If the database files
(the .bin file and its accompanying .idx file) are not in the default system database directory, you
must specify the full path. See also the Gretl User’s Guide for details on databases.

gretl --dump (or gretl -c)

— Dump the program’s configuration information to a plain text file (the name of the file is printed
on standard output). May be useful for trouble-shooting.

gretl --debug (or gretl -g)

— (MS Windows only) Open a console window to display any messages sent to the “standard out-
put” or “standard error” streams. Such messages are not usually visible on Windows; this may be
useful for trouble-shooting.

5.2 Preferences dialog

Various things in gretl are configurable under the “Tools, Preferences” menu. Separate menu items
are devoted to the choice of the monospaced font to be used in gretl screen output, and, on some
platforms, the font used for menus and other messages. The other options are organized under
five tabs, as follows.

1On Linux, a “wrapper” script named gretl is installed. This script checks whether the DISPLAY environment variable
is set; if so, it launches the GUI program, gretl_x11, and if not it launches the command-line program, gretlcli

267

Chapter 5. Options, arguments and path-searching 268

General: Here you can configure the base directory for gretl’s shared files. In addition there are sev-
eral check boxes. If your native language setting is not English and the local decimal point character
is not the period (“.”), unchecking “Use locale setting for decimal point” will make gretl use the pe-
riod regardless. Checking “Allow shell commands” makes it possible to invoke shell commands in
scripts and in the gretl console (this facility is disabled by default for security reasons).

Programs tab: You can specify the names or paths to various third-party programs that may called
by gretl under certain conditions.

Editor tab: Set preferences pertaining to the gretl script editor.

Network tab: Set the server on which to look for gretl databases, and also whether or not you use
an HTTP proxy.

HCCME tab: Set preferences regarding robust covariance matrix estimation. See the Gretl User’s
Guide for details.

MPI tab: This is shown only if gretl is built with support for MPI (Message Passing Interface).

Settings chosen via the Preferences dialog are stored from one gretl session to the next.

5.3 Invoking gretlcli

gretlcli

— Opens the program and waits for user input.

gretlcli datafile

— Starts the program with the specified datafile in its workspace. The data file may be in any
format supported by gretl (see the Gretl User’s Guide for details). The program will try to detect the
format of the file and treat it appropriately. See also Section 5.4 for path-searching behavior.

gretlcli --help (or gretlcli -h)

— Prints a brief summary of usage.

gretlcli --version (or gretlcli -v)

— Prints version identification for the program.

gretlcli --english (or gretlcli -e)

— Force use of English instead of translation.

gretlcli --run scriptfile (or gretlcli -r scriptfile)

— Execute the commands in scriptfile then hand over input to the command line. See Section 5.4
for path-searching behavior.

gretlcli --batch scriptfile (or gretlcli -b scriptfile)

— Execute the commands in scriptfile then exit. When using this option you will probably want to
redirect output to a file. See Section 5.4 for path-searching behavior.

When using the --run and --batch options, the script file in question must call for a data file to
be opened. This can be done using the open command within the script.

5.4 Path searching

When the name of a data file or script file is supplied to gretl or gretlcli on the command line, the
file is looked for as follows:

1. “As is”. That is, in the current working directory or, if a full path is specified, at the specified
location.

Chapter 5. Options, arguments and path-searching 269

2. In the user’s gretl directory (see Table 5.1 for the default values; note that PERSONAL is a place-
holder that is expanded by Windows in a user- and language-specific way, typically involving
“My Documents” on English-language systems).

3. In any immediate sub-directory of the user’s gretl directory.

4. In the case of a data file, search continues with the main gretl data directory. In the case of
a script file, the search proceeds to the system script directory. See Table 5.1 for the default
settings. (PREFIX denotes the base directory chosen at the time gretl is installed.)

5. In the case of data files the search then proceeds to all immediate sub-directories of the main
data directory.

Table 5.1: Default path settings

Linux MS Windows

User directory $HOME/gretl PERSONAL\gretl

System data directory PREFIX/share/gretl/data PREFIX\gretl\data

System script directory PREFIX/share/gretl/scripts PREFIX\gretl\scripts

Thus it is not necessary to specify the full path for a data or script file unless you wish to override
the automatic searching mechanism. (This also applies within gretlcli, when you supply a filename
as an argument to the open or run commands.)

When a command script contains an instruction to open a data file, the search order for the data
file is as stated above, except that the directory containing the script is also searched, immediately
after trying to find the data file “as is”.

MS Windows

Under MS Windows configuration information for gretl and gretlcli is stored in the Windows reg-
istry. A suitable set of registry entries is created when gretl is first installed, and the settings
can be changed under gretl’s “Tools, Preferences” menu. In case anyone needs to make manual
adjustments to this information, the entries can be found (using the standard Windows program
regedit.exe) under Software\gretl in HKEY_LOCAL_MACHINE (the main gretl directory and the
paths to various auxiliary programs) and HKEY_CURRENT_USER (all other configurable variables).

Chapter 6

Reserved Words

Reserved words, which cannot be used as the names of variables, fall into the following categories:

• Names of constants and data types, plus a few specials: const, NA, null, empty, obs, scalar,
series, matrix, string, list, bundle, array, void, for, continue, next, to.

• Names of gretl commands (see section 1.2).

User-defined functions cannot have names which collide with built-in functions, the names of which
are shown in Table 6.1.

270

Chapter 6. Reserved Words 271

Table 6.1: Function names

BFGScmax BFGScmin BFGSmax BFGSmin GSSmax GSSmin I Im

Lsolve NMmax NMmin NRmax NRmin Re abs access

acos acosh aggregate argname array asin asinh asort

assert atan atan2 atanh atof bcheck bessel bin2dec

bincoeff binperms bkfilt bkw bootci bootpval boxcox bread

brename bwfilt bwrite carg cdemean cdf cdiv cdummify

ceil cholesky chowlin cmod cmult cnameget cnameset cnorm

cnumber cols commute complex conj contains conv2d corr

corresp corrgm cos cosh cov cquad critical cswitch

ctrans cum curl dayspan dec2bin defarray defbundle deflist

deseas det diag diagcat diff digamma distance dnorm

dropcoll dsort dummify easterday ecdf eigen eigengen eigensym

eigsolve epochday errmsg errorif exists exp fcstats fdjac

feval fevalb fevd fft ffti filter firstobs fixname

flatten floor fracdiff fraclag fzero gammafun genseries geoplot

getenv getinfo getkeys getline ghk gini ginv grab

halton hdprod hfdiff hflags hfldiff hflist hpfilt hyp2f1

imaxc imaxr imhof iminc iminr inbundle infnorm inlist

instring instrings int interpol inv invcdf invmills invpd

irf irr iscomplex isconst isdiscrete isdummy isnan isoconv

isocountry isodate isoweek iwishart jsonget jsongetb juldate kdensity

kdsmooth kfilter kmeier kpsscrit ksetup ksimdata ksimul ksmooth

kurtosis lags lastobs ldet ldiff lincomb linearize ljungbox

lngamma loess log log10 log2 logistic lower lpsolve

lrcovar lrvar mat2list max maxc maxr mcorr mcov

mcovg mean meanc meanr median mexp mgradient midasmult

min minc minr missing misszero mlag mlincomb mlog

mnormal mols monthlen movavg mpiallred mpibarrier mpibcast mpirecv

mpireduce mpiscatter mpisend mpols mrandgen mread mreverse mrls

mshape msortby msplitby muniform mweights mwrite mxtab naalen

nadarwat nelem ngetenv nlines nobs normal normtest npcorr

npv nullspace numhess obslabel obsnum ok onenorm ones

orthdev pdf pergm pexpand pmax pmean pmin pnobs

polroots polyfit princomp printf prodc prodr psd psdroot

pshrink psum pvalue pxnobs pxsum qform qlrpval qnorm

qrdecomp quadtable quantile randgen randgen1 randint randperm randstr

rank ranking rcond readfile regsub remove replace resample

rgbmix rnameget rnameset round rows schur sd sdc

sdiff seasonals selifc selifr seq setnote sgn simann

sin sinh skewness sleep smplspan sort sortby sphericorr

sprintf sqrt square sscanf sst stack stdize strfday

strftime stringify strlen strncmp strpday strptime strsplit strstr

strstrip strsub strvals strvsort substr sum sumall sumc

sumr svd svm tan tanh tdisagg toepsolv tolower

toupper tr transp trigamma trimr typename typeof typestr

uniform uniq unvech upper urcpval values var varname

varnames varnum varsimul vec vech vma weekday wmean

wsd wvar xmin xmlget zeromiss zeros

Bibliography

Aalen, O. (1978) ‘Nonparametric inference for a family of counting processes’, Annals of Statistics
6(4): 701–726.

Adkins, L. C., M. S. Waters and R. C. Hill (2015) ‘Collinearity diagnostics in gretl’. Presented at
fourth gretl conference, Berlin. URL https://learneconometrics.com/pdf/Collin/collin_
gretl.pdf.

Agresti, A. (1992) ‘A survey of exact inference for contingency tables’, Statistical Science 7: 131–
153.

Akaike, H. (1974) ‘A new look at the statistical model identification’, IEEE Transactions on Auto-
matic Control AC-19: 716–723.

Arellano, M. (2003) Panel Data Econometrics, Oxford: Oxford University Press.

Armesto, M. T., K. Engemann and M. Owyang (2010) ‘Forecasting with mixed frequencies’, Fed-
eral Reserve Bank of St. Louis Review 92(6): 521–536. URL http://research.stlouisfed.org/
publications/review/10/11/Armesto.pdf.

Baltagi, B. H. and Y.-J. Chang (1994) ‘Incomplete panels: A comparative study of alternative esti-
mators for the unbalanced one-way error component regression model’, Journal of Econometrics
62: 67–89.

Beck, N. and J. N. Katz (1995) ‘What to do (and not to do) with time-series cross-section data’, The
American Political Science Review 89: 634–647.

Belsley, D., E. Kuh and R. Welsch (1980) Regression Diagnostics, New York: Wiley.

Breusch, T. S. and A. R. Pagan (1979) ‘A simple test for heteroscedasticity and random coefficient
variation’, Econometrica 47: 1287–1294.

Brock, W. A., W. D. Dechert, J. A. Scheinkman and B. LeBaron (1996) ‘A test for independence based
on the correlation dimension’, Econometric Reviews 15(3): 1287–1294.

Byrd, R. H., P. Lu, J. Nocedal and C. Zhu (1995) ‘A limited memory algorithm for bound constrained
optimization’, SIAM Journal on Scientific Computing 16(5): 1190–1208.

Chatterjee, S. and A. S. Hadi (1986) ‘Influential observations, high leverage points, and outliers in
linear regression’, Statistical Science 1(3): 379–416.

Choi, I. (2001) ‘Unit root tests for panel data’, Journal of International Money and Finance 20(2):
249–272.

Chow, G. C. and A.-l. Lin (1971) ‘Best linear unbiased interpolation, distribution, and extrapolation
of time series by related series’, The Review of Economics and Statistics 53(4): 372–375. URL
https://www.jstor.org/stable/1928739.

Cleveland, W. S. (1979) ‘Robust locally weighted regression and smoothing scatterplots’, Journal
of the American Statistical Association 74(368): 829–836.

Cottrell, A. (2015) ‘Response surfaces for DF-GLS p-values’. Working paper. URL http://gretl.
sourceforge.net/papers/df-gls-pvals.pdf.

272

https://learneconometrics.com/pdf/Collin/collin_gretl.pdf
https://learneconometrics.com/pdf/Collin/collin_gretl.pdf
http://research.stlouisfed.org/publications/review/10/11/Armesto.pdf
http://research.stlouisfed.org/publications/review/10/11/Armesto.pdf
https://www.jstor.org/stable/1928739
http://gretl.sourceforge.net/papers/df-gls-pvals.pdf
http://gretl.sourceforge.net/papers/df-gls-pvals.pdf

Bibliography 273

Datta, D. D. and W. Du (2012) ‘Nonparametric HAC estimation for time series data with missing
observations’. Board of Governors of the Federal Reserve System, International Finance Discus-
sion Papers, Number 1060. URL https://www.federalreserve.gov/pubs/ifdp/2012/1060/
ifdp1060.pdf.

Davidson, R. and J. G. MacKinnon (1993) Estimation and Inference in Econometrics, New York:
Oxford University Press.

(2004) Econometric Theory and Methods, New York: Oxford University Press.

Doornik, J. A. (1998) ‘Approximations to the asymptotic distribution of cointegration tests’, Jour-
nal of Economic Surveys 12: 573–593. Reprinted with corrections in McAleer and Oxley (1999).

Driscoll, J. C. and A. C. Kraay (1998) ‘Consistent covariance matrix estimation with spatially depen-
dent panel data’, Review of Economics and Statistics 80(4): 549–560. URL https://www.jstor.
org/stable/2646837.

Edgerton, D. and C. Wells (1994) ‘Critical values for the cusumsq statistic in medium and large
sized samples’, Oxford Bulletin of Economics and Statistics 56: 355–365.

Elliott, G., T. J. Rothenberg and J. H. Stock (1996) ‘Efficient tests for an autoregressive unit root’,
Econometrica 64: 813–836.

Engle, R. F. and C. W. J. Granger (1987) ‘Co-integration and error correction: Representation, esti-
mation, and testing’, Econometrica 55: 251–276.

Estrella, A. (1998) ‘A new measure of fit for equations with dichotomous dependent variables’,
Journal of Business & Economic Statistics 16(2): 198–205. URL https://doi.org/10.1080/
07350015.1998.10524753.

Fiorentini, G., G. Calzolari and L. Panattoni (1996) ‘Analytic derivatives and the computation of
GARCH estimates’, Journal of Applied Econometrics 11: 399–417.

Geweke, J. (1991) ‘Efficient simulation from the multivariate normal and student-t distributions
subject to linear constraints’. In Computer Science and Statistics: Proceedings of the Twenty-third
symposium on the Interface, pp. 571–578. Alexandria, VA: American Statistical Association.

Geweke, J. and S. Porter-Hudak (1983) ‘The estimation and application of long memory time series
models’, Journal of Time Series Analysis 4: 221–238.

Godfrey, L. G. (1994) ‘Testing for serial correlation by variable addition in dynamic models esti-
mated by instrumental variables’, The Review of Economics and Statistics 76(3): 550–559.

Golub, G. H. and C. F. Van Loan (1996) Matrix Computations, Baltimore and London: The John
Hopkins University Press, third edn.

Golub, G. H. and J. H. Welsch (1969) ‘Calculation of Gauss quadrature rules’, Mathematics of Com-
putation 23: 221–230.

Greene, W. H. (2000) Econometric Analysis, Upper Saddle River, NJ: Prentice-Hall, fourth edn.

Greenwood, M. (1926) ‘The natural duration of cancer’, Ministry of Health Reports on Public Health
and Medical Subjects 33: 1–26.

Halton, J. H. and G. B. Smith (1964) ‘Algorithm 247: Radical-inverse quasi-random point sequence’,
Communications of the ACM 7: 701–702.

Hamilton, J. D. (1994) Time Series Analysis, Princeton, NJ: Princeton University Press.

Hansen, B. E. (1997) ‘Approximate asymptotic p values for structural-change tests’, Journal of
Business & Economic Statistics 15: 60–67.

https://www.federalreserve.gov/pubs/ifdp/2012/1060/ifdp1060.pdf
https://www.federalreserve.gov/pubs/ifdp/2012/1060/ifdp1060.pdf
https://www.jstor.org/stable/2646837
https://www.jstor.org/stable/2646837
https://doi.org/10.1080/07350015.1998.10524753
https://doi.org/10.1080/07350015.1998.10524753

Bibliography 274

Heckman, J. (1979) ‘Sample selection bias as a specification error’, Econometrica 47: 153–161.

Hyndman, R. and Y. Fan (1996) ‘Sample quantiles in statistical packages’, The American Statistician
50(4): 361–365.

Im, K. S., M. H. Pesaran and Y. Shin (2003) ‘Testing for unit roots in heterogeneous panels’, Journal
of Econometrics 115: 53–74.

Imhof, J. P. (1961) ‘Computing the distribution of quadratic forms in normal variables’, Biometrika
48: 419–426.

Kanzler, L. (1999) ‘Very fast and correctly sized estimation of the BDS statistic’. Working paper.
URL http://dx.doi.org/10.2139/ssrn.151669.

Kaplan, E. L. and P. Meier (1958) ‘Nonparametric estimation from incomplete observations’, Journal
of the American Statistical Association 53(282): 457–481.

Kiviet, J. F. (1986) ‘On the rigour of some misspecification tests for modelling dynamic relation-
ships’, Review of Economic Studies 53: 241–261.

Koenker, R. (1981) ‘A note on studentizing a test for heteroscedasticity’, Journal of Econometrics
17: 107–112.

(1994) ‘Confidence intervals for regression quantiles’. In P. Mandl and M. Huskova (eds.),
Asymptotic Statistics, pp. 349–359. New York: Springer-Verlag.

Koenker, R. and G. Bassett (1978) ‘Regression quantiles’, Econometrica 46: 33–50.

Koenker, R. and J. Machado (1999) ‘Goodness of fit and related inference processes for quantile
regression’, Journal of the American Statistical Association 94: 1296–1310.

Koenker, R. and Q. Zhao (1994) ‘L-estimation for linear heteroscedastic models’, Journal of Non-
parametric Statistics 3: 223–235.

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin (1992) ‘Testing the null of stationarity
against the alternative of a unit root: How sure are we that economic time series have a unit
root?’, Journal of Econometrics 54: 159–178.

Levin, A., C.-F. Lin and J. Chu (2002) ‘Unit root tests in panel data: asymptotic and finite-sample
properties’, Journal of Econometrics 108: 1–24.

Locke, C. (1976) ‘A test for the composite hypothesis that a population has a gamma distribution’,
Communications in Statistics — Theory and Methods A5: 351–364.

MacKinnon, J. G. (1996) ‘Numerical distribution functions for unit root and cointegration tests’,
Journal of Applied Econometrics 11: 601–618.

Maddala, G. S. (1992) Introduction to Econometrics, Englewood Cliffs, NJ: Prentice-Hall.

Mandelbrot, B. B. (1983) The Fractal Geometry of Nature, New York: W. H. Freeman.

Marsaglia, G. and W. W. Tsang (2000) ‘The ziggurat method for generating random variables’,
Journal of Statistical Software 5: 3–30.

McAleer, M. and L. Oxley (1999) Practical Issues in Cointegration Analysis, Oxford: Blackwell.

McFadden, D. (1974) ‘Conditional logit analysis of qualitative choice behavior’. In P. Zarembka
(ed.), Frontiers in econometrics, pp. 105–142. New York: Academic Press.

Nelson, W. (1972) ‘Theory and applications of hazard plotting for censored failure data’, Techno-
metrics 14(4): 945–966.

http://dx.doi.org/10.2139/ssrn.151669

Bibliography 275

Nerlove, M. (1971) ‘Further evidence on the estimation of dynamic economic relations from a time
series of cross sections’, Econometrica 39: 359–382.

Neter, J., W. Wasserman and M. H. Kutner (1990) Applied Linear Statistical Models, Boston: Irwin,
third edn.

Newey, W. K. and K. D. West (1987) ‘A simple, positive semi-definite, heteroskedasticity and auto-
correlation consistent covariance matrix’, Econometrica 55: 703–708.

Ng, S. and P. Perron (2001) ‘Lag length selection and the construction of unit root tests with good
size and power’, Econometrica 69(6): 1519–1554.

Odell, P. L. and A. H. Feiveson (1966) ‘A numerical procedure to generate a sample covariance
matrix’, Journal of the American Statistical Association 61: 199–203.

Papadopoulos, A. (2023) ‘A new matrix statistic for the Hausman endogeneity test un-
der heteroskedasticity’, Econometrics 11(4): 1–11. URL https://doi.org/10.3390/
econometrics11040023.

Parzen, E. (1963) ‘On spectral analysis with missing observations and amplitude modulation’,
Sankhyā: The Indian Journal of Statistics, Series A 25(4): 383–392.

Perron, P. and Z. Qu (2007) ‘A simple modification to improve the finite sample properties of Ng
and Perron’s unit root tests’, Economics Letters 94(1): 12–19.

Pesaran, M. H. (2004) ‘General diagnostic tests for cross section dependence in panels’. Cambridge
Working Papers in Economics (CWPE 0435). URL https://www.repository.cam.ac.uk/handle/
1810/446.

Pesaran, M. H. and L. W. Taylor (1999) ‘Diagnostics for IV regressions’, Oxford Bulletin of Economics
and Statistics 61(2): 255–281.

Phillips, P. C. B. and K. Shimotsu (2004) ‘Local Whittle estimation in nonstationary and unit root
cases’, The Annals of Statistics 32(2): 659–692. URL http://arxiv.org/pdf/math/0406462.

Ramanathan, R. (2002) Introductory Econometrics with Applications, Fort Worth: Harcourt, fifth
edn.

Ridders, C. (1979) ‘A new algorithm for computing a single root of a real continuous function’,
IEEE Transactions on Circuits and Systems 26(11): 979–980.

Roberts, S. W. (1959) ‘Control chart tests based on geometric moving averages’, Technometrics
1(3): 239–250.

Robinson, P. (1995) ‘Gaussian semiparametric estimation of long range dependence’, Annals of
Statistics 22: 1630–1661.

Saito, M. and M. Matsumoto (2008) ‘SIMD-oriented Fast Mersenne Twister: a 128-bit pseudorandom
number generator’. In A. Keller, S. Heinrich and H. Niederreiter (eds.), Monte Carlo and Quasi-Monte
Carlo Methods 2006, pp. 607–622. Berlin: Springer.

Sargan, J. D. (1958) ‘The estimation of economic relationships using instrumental variables’, Econo-
metrica 26(3): 393–415. URL https://doi.org/10.2307/1907619.

Satterthwaite, F. E. (1946) ‘An approximate distribution of estimates of variance components’,
Biometrics Bulletin 2(6): 110–114.

Schwert, G. W. (1989) ‘Tests for unit roots: A Monte Carlo investigation’, Journal of Business and
Economic Statistics 7(2): 5–17.

Sephton, P. S. (1995) ‘Response surface estimates of the KPSS stationarity test’, Economics Letters
47: 255–261.

https://doi.org/10.3390/econometrics11040023
https://doi.org/10.3390/econometrics11040023
https://www.repository.cam.ac.uk/handle/1810/446
https://www.repository.cam.ac.uk/handle/1810/446
http://arxiv.org/pdf/math/0406462
https://doi.org/10.2307/1907619

Bibliography 276

(2021) ‘Finite sample lag adjusted critical values of the ADF-GLS test’, Computational
Economics URL https://doi.org/10.1007/s10614-020-10082-6.

Shapiro, S. and L. Chen (2001) ‘Composite tests for the gamma distribution’, Journal of Quality
Technology 33: 47–59.

Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis, London: Chapman and
Hall.

Stock, J. H. and M. W. Watson (1999) ‘Forecasting inflation’, Journal of Monetary Economics 44(2):
293–335.

Stock, J. H., J. H. Wright and M. Yogo (2002) ‘A survey of weak instruments and weak identification
in generalized method of moments’, Journal of Business & Economic Statistics 20(4): 518–529.

Stock, J. H. and M. Yogo (2003) ‘Testing for weak instruments in linear IV regression’. NBER
Technical Working Paper 284. URL https://www.nber.org/papers/t0284.

Swamy, P. A. V. B. and S. S. Arora (1972) ‘The exact finite sample properties of the estimators of
coefficients in the error components regression models’, Econometrica 40: 261–275.

Welch, B. L. (1951) ‘On the comparison of several mean values: An alternative approach’,
Biometrika 38: 330–336.

Windmeijer, F. (2005) ‘A finite sample correction for the variance of linear efficient two-step GMM
estimators’, Journal of Econometrics 126: 25–51.

https://doi.org/10.1007/s10614-020-10082-6
https://www.nber.org/papers/t0284

	Gretl Command Reference
	License
	Contents
	Gretl commands
	Introduction
	Commands
	add
	adf
	anova
	append
	ar
	ar1
	arch
	arima
	arma
	bds
	biprobit
	bkw
	boxplot
	break
	catch
	chow
	clear
	coeffsum
	coint
	continue
	corr
	corrgm
	cusum
	data
	dataset
	delete
	diff
	difftest
	discrete
	dpanel
	dummify
	duration
	elif
	else
	end
	endif
	endloop
	eqnprint
	equation
	estimate
	eval
	fcast
	flush
	foreign
	fractint
	freq
	funcerr
	function
	garch
	genr
	gmm
	gnuplot
	graphpg
	gridplot
	gpbuild
	heckit
	help
	hfplot
	hsk
	hurst
	if
	include
	info
	intreg
	johansen
	join
	kdplot
	kpss
	labels
	lad
	lags
	ldiff
	leverage
	levinlin
	logistic
	logit
	logs
	loop
	mahal
	makepkg
	markers
	meantest
	midasreg
	mle
	modeltab
	modprint
	modtest
	mpi
	mpols
	negbin
	nls
	normtest
	nulldata
	ols
	omit
	open
	orthdev
	outfile
	panel
	panplot
	panspec
	pca
	pergm
	pkg
	plot
	poisson
	print
	printf
	probit
	pvalue
	qlrtest
	qqplot
	quantreg
	quit
	rename
	reset
	restrict
	rmplot
	run
	runs
	scatters
	sdiff
	set
	setinfo
	setmiss
	setobs
	setopt
	shell
	smpl
	spearman
	square
	stdize
	store
	summary
	system
	tabprint
	textplot
	tobit
	tsls
	tsplots
	var
	varlist
	vartest
	vecm
	vif
	wls
	xcorrgm
	xtab

	Commands by topic
	Estimation
	Tests
	Transformations
	Statistics
	Dataset
	Graphs
	Printing
	Prediction
	Programming
	Utilities

	Short-form command options

	Gretl functions
	Introduction
	Accessors
	$ahat
	$aic
	$allprobs
	$bic
	$chisq
	$coeff
	$command
	$compan
	$datatype
	$depvar
	$df
	$diagpval
	$diagtest
	$dotdir
	$dw
	$dwpval
	$ec
	$error
	$ess
	$evals
	$fcast
	$fcse
	$fevd
	$Fstat
	$gmmcrit
	$h
	$hausman
	$hqc
	$huge
	$jalpha
	$jbeta
	$jvbeta
	$lang
	$llt
	$lnl
	$macheps
	$mapfile
	$mnlprobs
	$model
	$mpirank
	$mpisize
	$ncoeff
	$nobs
	$now
	$nvars
	$obsdate
	$obsmajor
	$obsmicro
	$obsminor
	$panelpd
	$parnames
	$pd
	$pi
	$pkgdir
	$pvalue
	$qlrbreak
	$result
	$rho
	$rsq
	$sample
	$sargan
	$seed
	$sigma
	$stderr
	$stopwatch
	$sysA
	$sysB
	$sysGamma
	$sysinfo
	$system
	$T
	$t1
	$t2
	$test
	$time
	$tmax
	$trsq
	$uhat
	$unit
	$vcv
	$vecGamma
	$version
	$vma
	$windows
	$workdir
	$xlist
	$xtxinv
	$yhat
	$ylist

	Built-in strings
	$dotdir
	$gnuplot
	$gretldir
	$tramo
	$tramodir
	$x12a
	$x12adir

	Functions proper
	abs
	acos
	acosh
	aggregate
	argname
	array
	asin
	asinh
	asort
	assert
	atan
	atan2
	atanh
	atof
	bcheck
	bessel
	BFGSmax
	BFGSmin
	BFGScmax
	BFGScmin
	bin2dec
	bincoeff
	binperms
	bkfilt
	bkw
	boxcox
	bread
	brename
	bwfilt
	bwrite
	carg
	cdemean
	cdf
	cdiv
	cdummify
	ceil
	cholesky
	chowlin
	cmod
	cmult
	cnorm
	cnumber
	cnameget
	cnameset
	cols
	commute
	complex
	conj
	contains
	conv2d
	cquad
	corr
	corresp
	corrgm
	cos
	cosh
	cov
	critical
	cswitch
	ctrans
	cum
	curl
	dayspan
	dec2bin
	defarray
	defbundle
	deflist
	deseas
	det
	diag
	diagcat
	diff
	digamma
	distance
	dnorm
	dropcoll
	dsort
	dummify
	easterday
	ecdf
	eigen
	eigengen
	eigensym
	eigsolve
	epochday
	errmsg
	errorif
	exists
	exp
	fcstats
	fdjac
	feval
	fevalb
	fevd
	fft
	ffti
	filter
	firstobs
	fixname
	flatten
	floor
	fracdiff
	fzero
	gammafun
	genseries
	geoplot
	getenv
	getinfo
	getkeys
	getline
	ghk
	gini
	ginv
	GSSmax
	GSSmin
	halton
	hdprod
	hfdiff
	hfldiff
	hflags
	hflist
	hpfilt
	hyp2f1
	I
	Im
	imaxc
	imaxr
	imhof
	iminc
	iminr
	inbundle
	infnorm
	inlist
	instring
	instrings
	int
	interpol
	inv
	invcdf
	invmills
	invpd
	irf
	irr
	iscomplex
	isconst
	isdiscrete
	isdummy
	isnan
	isoconv
	isocountry
	isodate
	isoweek
	iwishart
	jsonget
	jsongetb
	juldate
	kdensity
	kdsmooth
	kfilter
	kmeier
	kpsscrit
	ksetup
	ksimul
	ksmooth
	kurtosis
	lags
	lastobs
	ldet
	ldiff
	lincomb
	linearize
	ljungbox
	lngamma
	loess
	log
	log10
	log2
	logistic
	lpsolve
	lower
	lrcovar
	lrvar
	Lsolve
	mat2list
	max
	maxc
	maxr
	mcorr
	mcov
	mcovg
	mean
	meanc
	meanr
	median
	mexp
	mgradient
	midasmult
	min
	minc
	minr
	missing
	misszero
	mlag
	mlincomb
	mlog
	mnormal
	mols
	monthlen
	movavg
	mpiallred
	mpibarrier
	mpibcast
	mpirecv
	mpireduce
	mpiscatter
	mpisend
	mpols
	mrandgen
	mread
	mreverse
	mrls
	mshape
	msortby
	msplitby
	muniform
	mweights
	mwrite
	mxtab
	naalen
	nadarwat
	nelem
	ngetenv
	nlines
	NMmax
	NMmin
	nobs
	normal
	normtest
	npcorr
	npv
	NRmax
	NRmin
	nullspace
	numhess
	obs
	obslabel
	obsnum
	ok
	onenorm
	ones
	orthdev
	pdf
	pergm
	pexpand
	pmax
	pmean
	pmin
	pnobs
	polroots
	polyfit
	princomp
	prodc
	prodr
	psd
	psdroot
	pshrink
	psum
	pvalue
	pxnobs
	pxsum
	qform
	qlrpval
	qnorm
	qrdecomp
	quadtable
	quantile
	randgen
	randgen1
	randint
	randperm
	randstr
	rank
	ranking
	rcond
	Re
	readfile
	regsub
	remove
	replace
	resample
	rgbmix
	round
	rnameget
	rnameset
	rows
	schur
	sd
	sdc
	sdiff
	seasonals
	selifc
	selifr
	seq
	setnote
	sgn
	simann
	sin
	sinh
	skewness
	sleep
	smplspan
	sort
	sortby
	sphericorr
	sprintf
	sqrt
	square
	sscanf
	sst
	stack
	stdize
	strfday
	strftime
	stringify
	strlen
	strncmp
	strpday
	strptime
	strsplit
	strstr
	strstrip
	strsub
	strvals
	strvsort
	substr
	sum
	sumall
	sumc
	sumr
	svd
	svm
	tan
	tanh
	tdisagg
	toepsolv
	tolower
	toupper
	tr
	transp
	trigamma
	trimr
	typename
	typeof
	typestr
	uniform
	uniq
	unvech
	upper
	urcpval
	values
	var
	varname
	varnames
	varnum
	varsimul
	vec
	vech
	vma
	weekday
	wmean
	wsd
	wvar
	xmlget
	zeromiss
	zeros

	Operators
	Precedence
	Assignment
	Increment and decrement

	Comments in scripts
	Options, arguments and path-searching
	Invoking gretl
	Preferences dialog
	Invoking gretlcli
	Path searching
	MS Windows

	Reserved Words
	Bibliography

