Never fear, control variable to the rescue! Mwah ha ha. Omit me and your OLS is ruined!! $$\hat{\beta}_1 \to p \beta_1 + \rho_{xu} \left(\frac{\sigma_u}{\sigma_X}\right) !!$$ Help us! He's making our u_i correlated!! Suppose you have the following OLS model: $$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$ But you think there is an important variable, Z, still not included. For example: TestScore_i = $\beta_0 + \beta_1$ STR_i + u_i But you think that Parents'Income_i is probably an important determinant of Testscore_i too. Unfortunately, you don't have a variable for Parents'Income. | Who | What it says | In our example | |---|---|--| | The Villain: Z An omitted variable | "You'll never catch me!!" or "Can't find this variable, and/or it's hard to measure AND it is contained in u _i and correlated with X ₁ " | Parent's Income (i.e. can't collect private information, and correlated with STR) | | The Evil Henchman: u _i Correlated error | "They're really screwed now!" Or $"\hat{\beta}_1 \text{ converges in probability to } \beta_1 + \rho_{xu}(\frac{\sigma_u}{\sigma_X})"$ | How will the $\hat{\beta}_1$ be biased if Parent's Income is omitted?! Too high? Too low? Figure it out! | | The Innocents: $\hat{\beta}_1$ Effect of X_1 you want to estimate | "Help us!" Or "Our error is correlated so our effect is going to be measured with bias!" | The regression will not measure the true effect of STR on Test Score. | | The hero: W A control variable | "Blam! Kapow!" Or "Before: $E(u_i \mid X_{1i}) \neq 0$, After: $E(u_i \mid X_{1i}, W_i) = E(u_i \mid W_i)$ " "Given the W , the mean of u_i no longer depends on the X_1 " AND "No need to thank me citizens!" Or "Don't try to interpret my β as a causal coefficient!" | A variable on the student using the Free Lunch Program (which you only qualify for under certain income limits). |