

Never fear, control variable to the rescue!

Mwah ha ha.

Omit me and your

OLS is ruined!!

$$\hat{\beta}_1 \to p \beta_1 + \rho_{xu} \left(\frac{\sigma_u}{\sigma_X}\right) !!$$

Help us! He's making our u_i correlated!! Suppose you have the following OLS model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$

But you think there is an important variable, Z, still not included.

For example: TestScore_i = $\beta_0 + \beta_1$ STR_i + u_i

But you think that Parents'Income_i is probably an important determinant of Testscore_i too. Unfortunately, you don't have a variable for Parents'Income.

Who	What it says	In our example
The Villain: Z An omitted variable	"You'll never catch me!!" or "Can't find this variable, and/or it's hard to measure AND it is contained in u _i and correlated with X ₁ "	Parent's Income (i.e. can't collect private information, and correlated with STR)
The Evil Henchman: u _i Correlated error	"They're really screwed now!" Or $"\hat{\beta}_1 \text{ converges in probability to } \beta_1 + \rho_{xu}(\frac{\sigma_u}{\sigma_X})"$	How will the $\hat{\beta}_1$ be biased if Parent's Income is omitted?! Too high? Too low? Figure it out!
The Innocents: $\hat{\beta}_1$ Effect of X_1 you want to estimate	"Help us!" Or "Our error is correlated so our effect is going to be measured with bias!"	The regression will not measure the true effect of STR on Test Score.
The hero: W A control variable	"Blam! Kapow!" Or "Before: $E(u_i \mid X_{1i}) \neq 0$, After: $E(u_i \mid X_{1i}, W_i) = E(u_i \mid W_i)$ " "Given the W , the mean of u_i no longer depends on the X_1 " AND "No need to thank me citizens!" Or "Don't try to interpret my β as a causal coefficient!"	A variable on the student using the Free Lunch Program (which you only qualify for under certain income limits).