Economic Growth: Practice Problems

Intermediate Macroeconomics John T. Dalton

Question 1 Consider an economy with a Cobb Douglas aggregate production function given by $Y = AK^{\frac{1}{3}}L^{\frac{2}{3}}$.

- a) Prove that this production function exhibits constant returns to scale.
- b) Solve for the marginal product of capital and the marginal product of labor.
- c) Prove that this production function exhibits diminishing marginal product of capital and diminishing marginal product of labor.

Question 2 Consider an economy with an aggregate production function given by

$$Y_{t} = \left(AK_{t}^{\frac{1}{2}} + \frac{3}{2}L_{t}^{\frac{1}{2}}\right)^{2}.$$

- a) Repeat parts a) and b) from Question 1 for this production function.
- b) Assume A1: labor is inelastically supplied, $L_t = N_t$. Derive the per capita form of this production function, that is, find y_t in terms of k_t and any remaining parameters, where $y_t = \frac{Y_t}{N_t}$ and $k_t = \frac{K_t}{N_t}$.
- c) Assume A2: population is constant, $N_{t+1}=N_t$. Along with the per capita production function derived in part b), use the following per capita identities to derive the per capita neoclassical growth equation in terms of k_{t+1} , k_t , and any remaining parameters:

Per capita savings equals per capita investment: $s_t = x_t$

Savings rate is constant: $\frac{s_t}{y_t} = s$ Per capita law of motion of capital: $k_{t+1} = (1-\delta)k_t + x_t$ **Question 3** Consider the economy studied in lecture using the assumptions A1, A2, and A3. The per capita production function is given by $y_t = Ak_t^{\alpha}$, and the per capita neoclassical growth equation is given by $k_{t+1} = (1-\delta)k_t + sAk_t^{\alpha}$.

a) Derive an expression for the steady state capital-to-output ratio, $\frac{k_{ss}}{y_{ss}}$, in terms of s

and δ .

- b) What happens to $\frac{k_{ss}}{y_{ss}}$ as *s* increases?
- c) What happens to $\frac{k_{ss}}{y_{ss}}$ as δ increases?

Now, let $\delta = .05$, A = 5, s = .20, and $\alpha = .33$.

d) Solve for k_{ss} , y_{ss} , x_{ss} , and $\frac{k_{ss}}{y_{ss}}$.

Question 4 Consider an endogenous growth economy.

- a) Derive an expression for the growth rate of per capita capital, g_{kt} , in terms of *s*, *A*, and δ .
- b) Show that the growth rate of per capita output, g_{yt} , equals the growth rate of per capita capital, g_{kt} .
- c) Let $\delta = .10$, A = 1, and s = .20. What is the growth rate of per capita capital, g_{kt} ?