Solutions to Exercises: Chapter 7

7.1 The heat of vaporization of hexane is 30.8 kJ. mol⁻¹. The boiling point of hexane at a pressure of 1.00 atm is 68.9˚C. What will the boiling point be at a pressure of 0.50 atm?

Answer

From the Clausius-Clapeyron equation we see that:

$$
\ln \frac{p_1}{p_2} = \frac{H_{vap}}{R} \frac{1}{T_2} - \frac{1}{T_1}
$$

In this problem, $p_1 = 0.50$ atm, $p_2 = 1.0$ atm, $H_{vap} = 30.8$ kJ.mol⁻¹, $T_2 = 342.0$ K and we want to obtain T_1 . Thus:

$$
\ln \frac{0.5}{1.0} = \frac{30.8 \times 10^3 \text{ J.mol}^{-1}}{8.314 \text{ J.K}^{-1}} \frac{1}{342.0} - \frac{1}{T_1}
$$

Solving for T₁ gives : T₁ = 321.0K = 48.85°C

7.2 The atmospheric pressure decreases with height. The pressure at a height h above sea level is given approximately by the barometric formula $P = P_0 e^{-Mgh/RT}$, in which $M=0.0289$ kg. mol⁻¹, and g=9.81 ms⁻². Assume that the enthalpy of vaporization of water is $H_{\text{vap}} = 40.6 \text{ kJ} \text{ mol}^{-1}$ and predict at what temperature water will boil at a height of 2.5 miles.

Answer

Using the formula $P = P_0 e^{-Mgh/RT}$, we can determine the pressure at an altitude of 2.5 miles $=$ 4.0 km.

$$
P = 1.0atm e^{-\frac{(0.0289 \text{kg.mol}^{-1})(9.8 \text{m.s}^{-2})4000 \text{m}}{(8.314 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})(298.15 \text{K})}} = 0.62atm
$$

Using the Clausius-Clapeyron equation (as in Exc. 7.1) we see that:

$$
\ln \frac{0.62}{1.0} = \frac{40.6 \times 10^3 \text{ J.mol}^{-1}}{8.314 \text{ J.K}^{-1}} = \frac{1}{373.15} - \frac{1}{T_1}
$$

Solving for $T_1 = 360.0K = 86.85^{\circ}C$ as the boiling point of water at an altitude of 4.0 km :

7.3 At atmospheric pressure, $CO₂$ turns from solid to gas, i.e., it sublimates. Given that the triple point of CO_2 is at T=216.58K and p=518.0kPa, how would obtain liquid CO_2 ?

Answer

From the phase diagram shown above, we see that to convert $CO₂$ from a solid to a liquid, the temperature should be raised at a pressure above 518 kPa.

7.4 In a two-component system, what is the maximum number of phases that can be in equilibrium ?

Answer According to the Gibbs phase rule, $f = C-P+2$. In this case, $C=2$. Maximum phases implies f=0. Hence, P=4.

7.5 Determine the number of degrees of freedom for the following systems:

- (a) Solid $CO₂$ in equilibrium with $CO₂$ gas.
- (b) An aqueous solution of fructose
- (c) Fe(s) + H₂O(g) ==== FeO(s) + H₂(g)

Answer

(a) C=1, P=2. Hence $f = C-P+2 = 1$

(b) Since fructose does not dissociate we have two components, water and fructose. Thus, $C=2$, $P=1$ and $f=C-P+2=3$

(c) Fe(s) + H₂O(g) ==== FeO(s) + H₂(g) Since there is one reaction, $R=1$. Also, $C=4$, $P=2$. Hence, $f = C-P+2-R = 3$

But amounts of FeO and H_2 are generated only by this reaction, they are not independent, their amounts are in the ration 1:1. Hence there is one less degree of freedom.

7.6 Qualitative figures of the azeotropes in Table 7.2.

Answer All except HCl and HNO₃ are minimum-boiling-point azeotropes.

7.7 In Fig. 7.8, show that PA+PB+PC=1 for any point P. **Answer**

Extrapolate BP to intersect XY at A'. Then, from C draw a parallel to BP to intersect XZ at B'. Then, PA=A'Y, PC=A'C, and PB=CB'=CX. Hence, $PA+PB+PC = A'Y+A'C+CX = 1.$

7.8 In the triangular representation of the mole fractions of ternary solution, show that along the line joining an apex and a point on the opposite side, the ratio of two of the mole fractions remain constant while mole fraction of the third component changes.

Z

Answer

P A B $\overline{P'}$ A' B' X X' We need to show that: $\frac{AP}{BP}$ BP = A' P' B' P' . This can be seen as follows: Extend AP to intersect the opposite side at X; similarly extend A'P' to X'. Then APZ and A'P'Z are similar triangles. Hence: $\frac{AP}{AP}$ A'P' = PZ P' Z . Similarly, triangles BPZ and B'P'Z are similar. Hence: $\frac{BP}{P}$ B' P' = PZ P'Z Hence AP A'P' = BP B'P' , from which we get the needed result: $\frac{AP}{DP}$ BP = A' P' B' P'

7.9 On triangular graph, mark points representing the following compositions:

(a) $x_A = 0.2$, $x_B = 0.4$, $x_C = 0.4$ (b) $x_A = 0.5$, $x_B = 0$, $x_C = 0.5$ (c) $x_A = 0.3$, $x_B = 0.2$, $x_C = 0.5$ (d) $x_A = 0$, $x_B = 0$, $x_C = 1.0$

Answer

7.10 Obtain the lever rule (7.4.6) from (7.4.5).

L S P V^l V^s V g

Answer

x is the mole fraction of the gas. $V_s = xV_g + (1-x)V_l$

Eqn. (7.4.5) is
$$
x = \frac{SL}{LP}
$$
. Hence $(1 - x) = 1 - \frac{SL}{LP} = \frac{LP - SL}{LP} = \frac{SP}{LP}$
\nHence $\frac{1 - x}{x} = \frac{SP}{SL}$. This leads to (7.4.6): $x(SP) = (1-x)SL$.

7.11 When the der Waals equation in written in terms of the reduced variables p_r , V_r and Tr , the critical pressure, temperature and volume are equal to one. Consider small deviations from the critical point, $p_T=1+p$ and $V_T=1+ V$ on the critical isotherm. Show that V is proportional to $(p)^{1/3}$. This corresponds to the classical prediction (7.5.2).

Answer

The reduced van der Waals equation is:

$$
p_r = \frac{8T_r}{3V_r - 1} - \frac{3}{V_r^2}
$$

At the critical point, $\frac{p}{p}$ V c = ^{2}p $\overline{\mathrm{v}^2}$ $\frac{2p}{2}$ c = 0 . The Taylor expansion of p as function of V

at the critical point $(V_r=1, p_r=1)$ for a deviation V is:

$$
p(1 + V) = 1 + \frac{p}{V_c} V + \frac{1}{2} \frac{^{2}p}{V^{2}} (V)^{2} + \frac{1}{2 \cdot 3} \frac{^{3}p}{V^{3}} (V)^{3} + ...
$$

Since the first two derivatives are zero, to the leading order:

$$
p = \frac{1}{6} \frac{3p}{V^3} (V)^3
$$

From which it follows that: $V = 6/$ 3 p \overline{V}^3 $\frac{3p}{2}$ $\overline{}$ J. 1/3 $(p)^{1/3}$.