Physics 744 - Quantum Field Theory

Homework Set 1

1. A set of particles in three dimensions $\left(\vec{r}_{a}=\left(x_{a}, y_{a}, z_{a}\right)\right)$ interacts via the Lagrangian

$$
L\left(\vec{r}_{a}, \dot{\vec{r}}_{a}\right)=\sum_{a} \frac{1}{2} m_{a} \dot{\vec{r}}_{a} \cdot \dot{\vec{r}}_{a}-\sum_{a} W_{a}\left(\left|\vec{r}_{a}\right|\right)-\sum_{a<b} V_{a b}\left(\left|\vec{r}_{a}-\vec{r}_{b}\right|\right)
$$

where W_{a} and $V_{a b}$ are arbitrary functions of the magnitudes listed. Consider a set of new coordinates

$$
\begin{aligned}
& x_{a}^{\prime}=x_{a} \cos \theta-y_{a} \sin \theta \\
& y_{a}^{\prime}=y_{a} \cos \theta+x_{a} \sin \theta \\
& z_{a}^{\prime}=z_{a}
\end{aligned}
$$

(a) Show that $L\left(\vec{r}_{a}^{\prime}, \dot{\vec{r}}_{a}^{\prime}\right)=L\left(\vec{r}_{a}, \dot{\vec{r}}_{a}\right)$, and that therefore the derivative of the left-hand side with respect to θ is trivial.
(b) Deduce the corresponding conserved quantity, and identify it.
2. A set of particles in three dimensions $\left(\vec{r}_{a}=\left(x_{a}, y_{a}, z_{a}\right)\right)$ interacts via the Lagrangian

$$
L\left(\vec{r}_{a}, \dot{\vec{r}}_{a}\right)=\sum_{a} \frac{1}{2} m_{a} \dot{\vec{r}}_{a} \cdot \dot{\vec{r}}_{a}-\sum_{a<b} V_{a b}\left(\vec{r}_{a}-\vec{r}_{b}\right)
$$

where the $V_{a b}$ are arbitrary functions of the differences of the coordinates. Consider the Galilean transformation

$$
\begin{aligned}
x_{a}^{\prime} & =x_{a}+v t \\
y_{a}^{\prime} & =y_{a} \\
z_{a}^{\prime} & =z_{a}
\end{aligned}
$$

(a) Calculate $L\left(\vec{r}_{a}^{\prime}, \dot{\vec{r}}_{a}^{\prime}\right)$, and show that although its derivative with respect to v at $v=0$ is non-zero, it can be written as a total time derivative of some quantity.
(b) Find a quantity which is consequently conserved; that is, whose time derivative is zero. Write this quantity in terms of the total mass M, some part of the total momentum $\vec{P}=\left(P_{x}, P_{y}, P_{z}\right)$, and the center of mass coordinate $\vec{R}=(X, Y, Z)$.
3. Two particles are moving in one dimension with Lagrangian

$$
L=\frac{1}{2} M \dot{x}_{1}^{2}+2 M \dot{x}_{2}^{2}-\frac{1}{2} M \omega^{2}\left[x_{1}^{2}+4 x_{1} x_{2}+10 x_{2}^{2}\right]
$$

(a) Find a change of variables $x_{1}, x_{2} \rightarrow y_{1}, y_{2}$ so that the Lagrangian, rewritten in terms of the y 's, takes the form

$$
L=\frac{1}{2} M\left(\dot{y}_{1}^{2}+\dot{y}_{2}^{2}\right)-\frac{1}{2} K_{i j} y_{i} y_{j}
$$

what is the matrix K ? Note that $K_{i j}$ must be symmetric, so the coefficient of $y_{1} y_{2}$ must be cut in half to deduce $K_{12}=K_{21}$.
(b) Find the eigenvalues of K and the corresponding orthonormal eigenvectors. If the eigenvalues of K are complicated, then either you or I have made a mistake.
(c) Find a change of variables $y_{1}, y_{2} \rightarrow z_{1}, z_{2}$ such that the Lagrangian now takes the form

$$
L=\frac{1}{2} M\left(\dot{z}_{1}^{2}+\dot{z}_{2}^{2}\right)-\frac{1}{2} k_{1} z_{1}^{2}-\frac{1}{2} k_{2} z_{2}^{2}
$$

(d) What are the normal frequencies of this system?

