Physics 744 – Quantum Field Theory Homework Set 1

1. A set of particles in three dimensions $(\vec{r}_a = (x_a, y_a, z_a))$ interacts via the Lagrangian

$$L\left(\vec{r}_{a}, \dot{\vec{r}}_{a}\right) = \sum_{a} \frac{1}{2} m_{a} \dot{\vec{r}}_{a} \cdot \dot{\vec{r}}_{a} - \sum_{a} W_{a}\left(\left|\vec{r}_{a}\right|\right) - \sum_{a < b} V_{ab}\left(\left|\vec{r}_{a}-\vec{r}_{b}\right|\right)$$

where W_a and V_{ab} are arbitrary functions of the magnitudes listed. Consider a set of new coordinates

$$x'_{a} = x_{a} \cos \theta - y_{a} \sin \theta$$
$$y'_{a} = y_{a} \cos \theta + x_{a} \sin \theta$$
$$z'_{a} = z_{a}$$

- (a) Show that $L(\vec{r}'_a, \dot{\vec{r}}'_a) = L(\vec{r}_a, \dot{\vec{r}}_a)$, and that therefore the derivative of the left-hand side with respect to θ is trivial.
- (b) Deduce the corresponding conserved quantity, and identify it.
- 2. A set of particles in three dimensions $(\vec{r}_a = (x_a, y_a, z_a))$ interacts via the Lagrangian $L(\vec{r}_a, \dot{\vec{r}}_a) = \sum_a \frac{1}{2} m_a \dot{\vec{r}}_a \cdot \dot{\vec{r}}_a - \sum_{a < b} V_{ab} (\vec{r}_a - \vec{r}_b)$

where the V_{ab} are arbitrary functions of the differences of the coordinates. Consider the Galilean transformation

$$x'_{a} = x_{a} + vt$$
$$y'_{a} = y_{a}$$
$$z'_{a} = z_{a}$$

(a) Calculate $L(\vec{r}'_a, \dot{\vec{r}}'_a)$, and show that although its derivative with respect to v at v = 0

is non-zero, it can be written as a total time derivative of some quantity.

(b) Find a quantity which is consequently conserved; that is, whose time derivative is zero. Write this quantity in terms of the total mass *M*, some part of the total momentum $\vec{P} = (P_x, P_y, P_z)$, and the center of mass coordinate $\vec{R} = (X, Y, Z)$.

3. Two particles are moving in one dimension with Lagrangian

$$L = \frac{1}{2}M\dot{x}_{1}^{2} + 2M\dot{x}_{2}^{2} - \frac{1}{2}M\omega^{2}\left[x_{1}^{2} + 4x_{1}x_{2} + 10x_{2}^{2}\right]$$

(a) Find a change of variables $x_1, x_2 \rightarrow y_1, y_2$ so that the Lagrangian, rewritten in terms of the y's, takes the form

$$L = \frac{1}{2}M\left(\dot{y}_{1}^{2} + \dot{y}_{2}^{2}\right) - \frac{1}{2}K_{ij}y_{i}y_{j}$$

what is the matrix *K*? Note that K_{ij} must be symmetric, so the coefficient of y_1y_2 must be cut in half to deduce $K_{12} = K_{21}$.

- (b) Find the eigenvalues of *K* and the corresponding orthonormal eigenvectors. If the eigenvalues of *K* are complicated, then either you or I have made a mistake.
- (c) Find a change of variables $y_1, y_2 \rightarrow z_1, z_2$ such that the Lagrangian now takes the form

$$L = \frac{1}{2}M\left(\dot{z}_{1}^{2} + \dot{z}_{2}^{2}\right) - \frac{1}{2}k_{1}z_{1}^{2} - \frac{1}{2}k_{2}z_{2}^{2}$$

(d) What are the normal frequencies of this system?