Physics 744 - Field Theory

Homework Set 5

All three of these problems deal with the $\psi^* \psi \phi$ theory, containing a complex field ψ and a real field ϕ , with Lagrangian density

 $\mathcal{L} = \partial_{\mu} \psi^* \partial_{\mu} \psi + \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - m^2 \psi^* \psi - \frac{1}{2} M^2 \phi^2 - \gamma \psi^* \psi \phi$

Note that for all but part of problem 1, the interaction term is irrelevant.

- 1. For this problem, treat the fields completely classically.
 - (a) Write out the equations of motion for ψ , ψ^* , and ϕ . Verify that two of them are merely complex conjugates of each other.
 - (b) Verify that $\psi \to e^{-i\theta}\psi$ is a symmetry of the theory. Work out the corresponding conserved current J_{μ} .
- 2. We now want to quantize the theory in the interaction picture.
 - (a) Write the conserved quantity $Q = \int J^0(\vec{x}) d^3 \vec{x}$ in terms of the annihilation operators $\alpha_{\vec{k}}$, $\beta_{\vec{k}}$, and $\gamma_{\vec{k}}$ and their corresponding creation operators. For consistency, let $\alpha_{\vec{k}}$ and $\beta_{\vec{k}}$ annihilate the particle ψ and its corresponding antiparticle ψ^* , and let $\gamma_{\vec{k}}$ annihilate ϕ .
 - (b) Write Q in terms of normalized, non-relativistic creation and annihilation operators, $a_{\bar{k}}$, $b_{\bar{k}}$ and $c_{\bar{k}}$. What is the total charge Q for a system containing $n \psi$'s, $m \psi$ *'s and $p \phi$'s?
- 3. Work out expressions for all six of the free propagators given below, and write the answer in a manifestly Lorentz invariant manner (so it has an $\int d^4 \mathbf{k}$ and a $\lim_{\varepsilon \to 0}$, as in class). Most of them will be trivially zero.

$$\begin{array}{ll} \langle 0 | \mathcal{T} \big[\phi(\mathbf{x}) \phi(\mathbf{y}) \big] | 0 \rangle, & \langle 0 | \mathcal{T} \big[\psi(\mathbf{x}) \phi(\mathbf{y}) \big] | 0 \rangle, & \langle 0 | \mathcal{T} \big[\psi^*(\mathbf{x}) \phi(\mathbf{y}) \big] | 0 \rangle, \\ \langle 0 | \mathcal{T} \big[\psi(\mathbf{x}) \psi(\mathbf{y}) \big] | 0 \rangle, & \langle 0 | \mathcal{T} \big[\psi^*(\mathbf{x}) \psi^*(\mathbf{y}) \big] | 0 \rangle, & \langle 0 | \mathcal{T} \big[\psi^*(\mathbf{x}) \psi(\mathbf{y}) \big] | 0 \rangle. \end{array}$$