
Physics 744 – Quantum Field Theory 

Solution Set 2 
 
1. [5] Let x, y, z, and w be four independent four-vectors.  We wish to form a scalar 

quantity s that is Lorentz invariant under proper Lorentz transformations and 
is linear in each of these four quantities, i.e., it will contain expressions like xyzw, 
but we want to show explicitly how the indices can be put together. 
(a) [3] What is the most general expression that can be formed of this type?  

There should be four linearly independent terms. 
 
 We need to write something like s x y z w    , but we need to get rid of all the 
spare indices.  This can be done by contracting them together, for example, writing terms 
like   s x y z w 

    x y z w , and there will be three similar terms.  We can also try 

to get rid of indices by contracting with the Levi-Civita tensor.  Since this tensor is 
completely anti-symmetric, it doesn’t matter which index we contract with which, so in 
summary the most general expression will look like 

        s A B C D x y z w   
         x y z w x z y w x w z y  

 
(b) [2] A term is called a true scalar if it is invariant under parity, and a 

pseudoscalar if it changes sign under parity.  Classify the four terms as 
scalars or pseudoscalars. 

 
 Under parity, the expression 0 0x y x y   x y

 
 remains unchanged, because the 

time part is unchanged and the space part is reversed.  Hence the terms with coefficients 
A, B, and C are all true scalars.  In contrast, if you look at x y z w   

 , it is clear that 

three of the indices must be space indices and one of them will be time, so that under 
parity it acquires three minus signs, for a net factor of negative one.  Therefore the D 
term is a pseudoscalar. 
 
 
2. [15] In classical physics, if an object of mass m hits an object of identical mass, 

the two objects will head off at a 90 degree angle compared to each other.  
Consider an object of mass m moving at speed vi and colliding elastically with 
another object of mass m.  The two move off at identical speeds vf at angles 1  

and 2 . 

(a) [6] Write the four-momentum of all the incoming and outgoing particles, and 
write the conservation of four-momentum in components. 

 
 Let’s work in a frame such that the initial particle is moving in the x-direction and 
the final particles are moving in the xy-plane.  Then the four momentum of the particles 
will be: 
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Conservation of four-momentum tells us 1 2 1 2   p p p p .  Ignoring the trivial z-

component, and cancelling the common factor of m, we see that 
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(b) [1] Show that 1 2  . 

 
 This follows trivially from the third equation. 
 

(c) [2] Find a formula for f  in terms of the initial velocity. 

 
 This follows directly from the first equation,  1

2 1f i   .  if we want it more 

explicit, we can write this as  21
2 1 1 1f iv    . 

 
(d) [6] Show that the final angle is given by    2cos 1 3i i     .  Hence show 

that the outgoing particles are perpendicular in the non-relativistic limit.  
What happens in the ultrarelativistic limit? 

  
 Solving the only remaining equation, we have 
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From the definition of 21 1 v    it is easy to show that  2 21 1v   , which we 

rearrange as 2 2 2 1v   .  Substituting, we find 
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In the non-relativistic limit, we have 1i   and therefore 2 1
2cos f  , 2 1

2cos f  , 
1
2

cos f  , corresponding to an angle of 45 degrees, and hence the outgoing particles 

are perpendicular.  In the relativistic limit, i    and therefore 2cos 1f  , and both 

particles go forward, with an opening angle approaching zero. 
 



3. [10] A Z-particle (mass mZ) at rest decays to an electron (mass effectively zero) 
with energy E1, a positron (also massless) with energy E2 moving at an angle   
compared to it, and an invisible X particle of unknown mass.  Find a formula for 
the unknown mass 2

Xm . 

 
 We first denote the various momenta by Zp , 1p , 2p , and Xp .  Conservation of 

four-momentum tells us that 

1 2Z X  p p p p . 

Now, we know everything about the Z’s momentum, and we know a great deal about the 
momentum of each of the two electrons.  The X we know nothing about, but we do want 
its mass.  Fortunately, squaring Xp will give us the mass, without exploring the rest of our 

ignorance.  We therefore solve this equation for Xp  and then square the resulting 

expression. 
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We have treated the electron and positron as effectively massless.  The Z has no 
momentum (it is at rest), and therefore the dot product of its four-momentum with the 
electron or positron is 1 1 1 1Z Z Z ZE E p p m E    p p

 
 and 2 2Z Zm E p p .  Finally, we 

have 

1 2 1 2 1 2 1 2 1 2 1 2 1 2cos cos .E E p p E E p p E E E E        p p
 

 

Substituting everything in, we have 

 2 2
1 2 1 22 2 2 1 cos .X Z Z Zm m m E m E E E       

 


