Solution Set 2

1. [5] Let x, y, z, and w be four independent four-vectors. We wish to form a scalar quantity s that is Lorentz invariant under proper Lorentz transformations and is linear in each of these four quantities, i.e., it will contain expressions like xyzw, but we want to show explicitly how the indices can be put together.
(a) [3] What is the most general expression that can be formed of this type? There should be four linearly independent terms.

We need to write something like $s=x^{\alpha} y^{\beta} z^{\gamma} w^{\delta}$, but we need to get rid of all the spare indices. This can be done by contracting them together, for example, writing terms like $s=x^{\alpha} y_{\alpha} z^{\gamma} w_{\gamma}=(\mathbf{x} \cdot \mathbf{y})(\mathbf{z} \cdot \mathbf{w})$, and there will be three similar terms. We can also try to get rid of indices by contracting with the Levi-Civita tensor. Since this tensor is completely anti-symmetric, it doesn't matter which index we contract with which, so in summary the most general expression will look like

$$
s=A(\mathbf{x} \cdot \mathbf{y})(\mathbf{z} \cdot \mathbf{w})+B(\mathbf{x} \cdot \mathbf{z})(\mathbf{y} \cdot \mathbf{w})+C(\mathbf{x} \cdot \mathbf{w})(\mathbf{z} \cdot \mathbf{y})+D \varepsilon_{\alpha \beta \gamma \delta} x^{\alpha} y^{\beta} z^{\gamma} w^{\delta}
$$

(b) [2] A term is called a true scalar if it is invariant under parity, and a pseudoscalar if it changes sign under parity. Classify the four terms as scalars or pseudoscalars.

Under parity, the expression $\mathbf{x} \cdot \mathbf{y}=x^{0} y^{0}-\vec{x} \cdot \vec{y}$ remains unchanged, because the time part is unchanged and the space part is reversed. Hence the terms with coefficients A, B, and C are all true scalars. In contrast, if you look at $\varepsilon_{\alpha \beta \gamma \delta} x^{\alpha} y^{\beta} z^{\gamma} w^{\delta}$, it is clear that three of the indices must be space indices and one of them will be time, so that under parity it acquires three minus signs, for a net factor of negative one. Therefore the D term is a pseudoscalar.
2. [15] In classical physics, if an object of mass m hits an object of identical mass, the two objects will head off at a 90 degree angle compared to each other. Consider an object of mass m moving at speed v_{i} and colliding elastically with another object of mass \boldsymbol{m}. The two move off at identical speeds $\boldsymbol{v}_{\boldsymbol{f}}$ at angles θ_{1} and θ_{2}.
(a) [6] Write the four-momentum of all the incoming and outgoing particles, and write the conservation of four-momentum in components.

Let's work in a frame such that the initial particle is moving in the x-direction and the final particles are moving in the $x y$-plane. Then the four momentum of the particles will be:

$$
\begin{array}{ccc}
\text { initial: } & \mathbf{p}_{1}=m \gamma_{i}\left(1, v_{i}, 0,0\right) & \mathbf{p}_{2}=m(1,0,0,0) \\
\text { final: } & \mathbf{p}_{1}^{\prime}=m \gamma_{f}\left(1, v_{f} \cos \theta_{1}, v_{f} \sin \theta_{1}, 0\right) & \mathbf{p}_{2}^{\prime}=m \gamma_{f}\left(1, v_{f} \cos \theta_{2},-v_{f} \sin \theta_{2}, 0\right)
\end{array}
$$

Conservation of four-momentum tells us $\mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{p}_{1}^{\prime}+\mathbf{p}_{2}^{\prime}$. Ignoring the trivial zcomponent, and cancelling the common factor of m, we see that

$$
\begin{aligned}
\gamma_{i}+1 & =2 \gamma_{f}, \\
\gamma_{i} v_{i} & =2 \gamma_{f} v_{f} \cos \theta_{f}, \\
0 & =\gamma_{f} v_{f}\left(\cos \theta_{1}-\cos \theta_{2}\right) .
\end{aligned}
$$

(b) [1] Show that $\theta_{1}=\theta_{2}$.

This follows trivially from the third equation.
(c) [2] Find a formula for γ_{f} in terms of the initial velocity.

This follows directly from the first equation, $\gamma_{f}=\frac{1}{2}\left(1+\gamma_{i}\right)$. if we want it more explicit, we can write this as $\gamma_{f}=\frac{1}{2}\left(1+1 / \sqrt{1-v_{i}^{2}}\right)$.
(d) [6] Show that the final angle is given by $\cos ^{2} \theta=\left(\gamma_{i}+1\right) /\left(\gamma_{i}+3\right)$. Hence show that the outgoing particles are perpendicular in the non-relativistic limit. What happens in the ultrarelativistic limit?

Solving the only remaining equation, we have

$$
\left(\cos \theta_{f}\right)^{2}=\left(\frac{\gamma_{i} v_{i}}{2 \gamma_{f} v_{f}}\right)^{2}=\frac{\gamma_{i}^{2} v_{i}^{2}}{4 \gamma_{f}^{2} v_{f}^{2}}
$$

From the definition of $\gamma=1 / \sqrt{1-v^{2}}$ it is easy to show that $\gamma^{2}\left(1-v^{2}\right)=1$, which we rearrange as $\gamma^{2} v^{2}=\gamma^{2}-1$. Substituting, we find

$$
\cos ^{2} \theta_{f}=\frac{\gamma_{i}^{2} v_{i}^{2}}{4 \gamma_{f}^{2} v_{f}^{2}}=\frac{\gamma_{i}^{2}-1}{4\left(\gamma_{f}^{2}-1\right)}=\frac{\gamma_{i}^{2}-1}{4\left[\frac{1}{4}\left(\gamma_{i}+1\right)^{2}-1\right]}=\frac{\gamma_{i}^{2}-1}{\gamma_{i}^{2}+2 \gamma_{i}-3}=\frac{\left(\gamma_{i}+1\right)\left(\gamma_{i}-1\right)}{\left(\gamma_{i}+3\right)\left(\gamma_{i}-1\right)}=\frac{\gamma_{i}+1}{\gamma_{i}+3}
$$

In the non-relativistic limit, we have $\gamma_{i}=1$ and therefore $\cos ^{2} \theta_{f}=\frac{1}{2}, \cos ^{2} \theta_{f}=\frac{1}{2}$, $\cos \theta_{f}=\frac{1}{\sqrt{2}}$, corresponding to an angle of 45 degrees, and hence the outgoing particles are perpendicular. In the relativistic limit, $\gamma_{i}=\infty$ and therefore $\cos ^{2} \theta_{f}=1$, and both particles go forward, with an opening angle approaching zero.

3. [10] A Z-particle (mass \boldsymbol{m}_{Z}) at rest decays to an electron (mass effectively zero)

 with energy E_{1}, a positron (also massless) with energy \boldsymbol{E}_{2} moving at an angle θ compared to it, and an invisible X particle of unknown mass. Find a formula for the unknown mass m_{X}^{2}.We first denote the various momenta by $\mathbf{p}_{Z}, \mathbf{p}_{1}, \mathbf{p}_{2}$, and \mathbf{p}_{X}. Conservation of four-momentum tells us that

$$
\mathbf{p}_{Z}=\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{X} .
$$

Now, we know everything about the Z's momentum, and we know a great deal about the momentum of each of the two electrons. The X we know nothing about, but we do want its mass. Fortunately, squaring \mathbf{p}_{X} will give us the mass, without exploring the rest of our ignorance. We therefore solve this equation for \mathbf{p}_{X} and then square the resulting expression.

$$
\begin{aligned}
\mathbf{p}_{X} & =\mathbf{p}_{Z}-\mathbf{p}_{1}-\mathbf{p}_{2}, \\
\mathbf{p}_{X}^{2} & =\left(\mathbf{p}_{Z}-\mathbf{p}_{1}-\mathbf{p}_{2}\right)^{2}, \\
m_{X}^{2} & =\mathbf{p}_{Z}^{2}+\mathbf{p}_{1}^{2}+\mathbf{p}_{2}^{2}-2 \mathbf{p}_{1} \cdot \mathbf{p}_{Z}-2 \mathbf{p}_{2} \cdot \mathbf{p}_{z}+2 \mathbf{p}_{1} \cdot \mathbf{p}_{2} \\
& =m_{Z}^{2}+0+0-2 \mathbf{p}_{1} \cdot \mathbf{p}_{Z}-2 \mathbf{p}_{2} \cdot \mathbf{p}_{z}+2 \mathbf{p}_{1} \cdot \mathbf{p}_{2} .
\end{aligned}
$$

We have treated the electron and positron as effectively massless. The Z has no momentum (it is at rest), and therefore the dot product of its four-momentum with the electron or positron is $\mathbf{p}_{Z} \cdot \mathbf{p}_{1}=E_{Z} E_{1}-\vec{p}_{Z} \cdot \vec{p}_{1}=m_{Z} E_{1}$ and $\mathbf{p}_{Z} \cdot \mathbf{p}_{2}=m_{Z} E_{2}$. Finally, we have

$$
\mathbf{p}_{1} \cdot \mathbf{p}_{2}=E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}=E_{1} E_{2}-p_{1} p_{2} \cos \theta=E_{1} E_{2}-E_{1} E_{2} \cos \theta .
$$

Substituting everything in, we have

$$
m_{X}^{2}=m_{z}^{2}-2 m_{z} E_{1}-2 m_{z} E_{2}+2 E_{1} E_{2}(1-\cos \theta) .
$$

