Physics 744 - Field Theory
 Solution Set 5

All three of these problems deal with the $\psi^{*} \psi \phi$ theory, containing a complex field ψ and a real field ϕ, with Lagrangian density

$$
\mathcal{L}=\partial_{\mu} \psi^{*} \partial_{\mu} \psi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \psi^{*} \psi-\frac{1}{2} M^{2} \phi^{2}-\gamma \psi^{*} \psi \phi
$$

Note that for all but part of problem 1, the interaction term is irrelevant.

1. [10] For this problem, treat the fields completely classically.
(a) [5] Write out the equations of motion for ψ, ψ^{*}, and ϕ. Verify that two of them are merely complex conjugates of each other.

This is straightforward. We have

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \psi}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \Rightarrow-m^{2} \psi^{*}-\gamma \psi^{*} \phi=\partial_{\mu} \partial^{\mu} \psi^{*} \\
& \frac{\partial \mathcal{L}}{\partial \psi^{*}}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)} \Rightarrow-m^{2} \psi-\gamma \psi \phi=\partial_{\mu} \partial^{\mu} \psi \\
& \frac{\partial \mathcal{L}}{\partial \phi}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \Rightarrow-M^{2} \phi-\gamma \psi^{*} \psi=\partial_{\mu} \partial^{\mu} \phi
\end{aligned}
$$

Obviously, the first two are complex conjugates of each other.
(b) [5] Verify that $\psi \rightarrow e^{-i \theta} \psi$ is a symmetry of the theory. Work out the corresponding conserved current J_{μ}.

If $\psi \rightarrow e^{-i \theta} \psi$ then $\psi^{*} \rightarrow e^{i \theta} \psi^{*}$. It is obvious that if you make this substitution, the phases will cancel. The corresponding current is

$$
J^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)}(-i \psi)+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)}\left(i \psi^{*}\right)+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}(0)=-i \psi \partial^{\mu} \psi^{*}+i \psi^{*} \partial^{\mu} \psi
$$

I don't know why I asked for it with one index down, but you can trivially lower it if you want.
2. [10] We now want to quantize the theory in the interaction picture.
(a) [7] Write the conserved quantity $Q=\int J^{0}(\vec{x}) d^{3} \vec{x}$ in terms of the annihilation operators $\alpha_{\vec{k}}, \beta_{\vec{k}}$, and $\gamma_{\vec{k}}$ and their corresponding creation operators. For consistency, let $\alpha_{\vec{k}}$ and $\beta_{\vec{k}}$ annihilate the particle ψ and its corresponding anti-particle ψ^{*}, and let $\gamma_{\bar{k}}$ annihilate ϕ.

The fields are given by

$$
\psi(\mathbf{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{k}}\left(\alpha_{\vec{k}} e^{-i \mathbf{k} \cdot \mathbf{x}}+\beta_{\vec{k}}^{\dagger} e^{i \mathbf{k} \cdot \mathbf{x}}\right), \quad \phi(\mathbf{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{k}}\left(\gamma_{\vec{k}} e^{-i \mathbf{k} \cdot \mathbf{x}}+\gamma_{\vec{k}}^{\dagger} e^{i \mathbf{k} \cdot \mathbf{x}}\right),
$$

and $\psi^{*}(\mathbf{x})$ being given simply by the Hermitian conjugate of $\psi(\mathbf{x})$. We therefore have

$$
\begin{aligned}
& Q=\int J^{0}(\mathbf{x}) d^{3} \vec{x}=\int i\left[\psi^{*}(\mathbf{x}) \partial^{0} \psi(\mathbf{x})-\psi(\mathbf{x}) \partial^{0} \psi^{*}(\mathbf{x})\right] d^{3} \vec{x} \\
& =\int i d^{3} \vec{x} \int \frac{d^{3} \vec{k} d^{3} \vec{k} \vec{k}^{\prime}}{(2 \pi)^{6} 4 \omega_{k} \omega_{k^{\prime}}}\left\{\begin{array}{l}
\left(\beta_{\vec{k}^{\prime}}{ }^{i \vec{k}^{\prime} \cdot \vec{x}-i \omega_{k} t}+\alpha_{\vec{k}}^{\dagger} e^{-i \overrightarrow{k^{\prime}} \cdot \vec{x}+i \omega_{k} t}\right)\left(-i \omega_{k} \alpha_{\vec{k}} e^{i \vec{k} \cdot \vec{x}-i \omega_{k} t}+i \omega_{k} \beta_{\vec{k}}^{\dagger} e^{-i \vec{k} \cdot \vec{x}+i \omega_{k} t}\right) \\
-\left(\alpha_{\vec{k}} e^{i \vec{k} \cdot \vec{x}-i \omega_{k} t}+\beta_{\vec{k}}^{\dagger} e^{-i \vec{k} \cdot \bar{x}+i \omega_{k} t}\right)\left(-i \omega_{k^{\prime}} \beta_{\vec{k}^{\prime}} e^{i \overrightarrow{k^{\prime}} \cdot \vec{x}-i \omega_{k} t}+i \omega_{k^{\prime}} \cdot \alpha_{\vec{k}}^{\dagger} e^{-i \overrightarrow{k^{\prime}} \cdot \bar{x}+i \omega_{k} t}\right)
\end{array}\right\} \\
& =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}(2 \pi)^{3}}{(2 \pi)^{6} 4 \omega_{k} \omega_{k^{\prime}}}\left\{\begin{array}{l}
\delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right)\left[\begin{array}{l}
-\left(\omega_{k} \beta_{\vec{k}} \beta_{\vec{k}}^{\dagger}+\omega_{k^{\prime}} \beta_{\vec{k}}^{\dagger} \beta_{\vec{k}^{\prime}}\right) e^{i\left(\omega_{k}-\omega_{k}\right) t} \\
+\left(\omega_{k} \alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}+\omega_{k^{\prime}} \alpha_{\vec{k}} \alpha_{\vec{k}^{\prime}}^{\dagger}\right) e^{i\left(\omega_{k^{\prime}}-\omega_{k}\right) t}
\end{array}\right] \\
+\delta^{3}\left(\vec{k}+\vec{k}^{\prime}\right)\left[\begin{array}{l}
\left(\omega_{k^{\prime}} \beta_{\vec{k}}^{\dagger} \alpha_{\vec{k}^{\prime}}^{\dagger}-\omega_{k} \alpha_{\overrightarrow{k^{\prime}}}^{\dagger} \beta_{\vec{k}}^{\dagger}\right) e^{i\left(\omega_{k}+\omega_{k}\right) t} \\
+\left(\omega_{k^{\prime}} \alpha_{\vec{k}} \beta_{\vec{k}^{\prime}}-\omega_{k} \beta_{\overrightarrow{k^{\prime}}} \alpha_{\vec{k}}\right) e^{-i\left(\omega_{k}+\omega_{k}\right) t}
\end{array}\right]
\end{array}\right\} \\
& =\int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 4 \omega_{k}}\left\{\begin{array}{l}
\alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}+\alpha_{\vec{k}} \alpha_{\vec{k}}^{\dagger}-\beta_{\vec{k}} \beta_{\vec{k}}^{\dagger}-\beta_{\vec{k}}^{\dagger} \beta_{\vec{k}} \\
+\left(\beta_{\vec{k}}^{\dagger} \alpha_{-\vec{k}}^{\dagger}-\alpha_{-\vec{k}}^{\dagger} \beta_{\vec{k}}^{\dagger}\right) e^{2 i \omega_{k} t}+\left(\alpha_{\vec{k}} \beta_{-\vec{k}}-\beta_{-\bar{k}} \alpha_{\vec{k}}\right) e^{-2 i \omega_{k} t}
\end{array}\right\} \\
& =\int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 4 \omega_{k}}\left\{2 \alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}+\left[\alpha_{\vec{k}}, \alpha_{\vec{k}}^{\dagger}\right]-\left[\beta_{\vec{k}}, \beta_{\vec{k}}^{\dagger}\right]-2 \beta_{\vec{k}}^{\dagger} \beta_{\vec{k}}\right\}=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{k}}\left\{\alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}-\beta_{\vec{k}}^{\dagger} \beta_{\vec{k}}\right\}
\end{aligned}
$$

(b) [3] Write Q in terms of normalized, non-relativistic creation and annihilation operators, $a_{\vec{k}}, b_{\vec{k}}$ and $c_{\vec{k}}$. What is the total charge \boldsymbol{Q} for a system containing $\boldsymbol{n} \psi$'s, $\boldsymbol{m} \psi^{*}$'s and $\boldsymbol{p} \phi$'s?

Switching to finite volume notation

$$
Q=\sum_{\vec{k}} \frac{1}{2 V \omega_{k}}\left\{\alpha_{\vec{k}}^{\dagger} \alpha_{\vec{k}}-\beta_{\vec{k}}^{\dagger} \beta_{\vec{k}}\right\}=\sum_{\vec{k}}\left\{a_{\vec{k}}^{\dagger} a_{\vec{k}}-b_{\vec{k}}^{\dagger} b_{\vec{k}}\right\}
$$

This is just the number operator for the ψ^{\prime} 's and ψ^{*} 's, so if we have n and m of these respectively, then $Q=n-m$.
3. [15] Work out expressions for all six of the free propagators given below, and write the answer in a manifestly Lorentz invariant manner (so it has an $\int d^{4} \mathbf{k}$ and a $\lim _{\varepsilon \rightarrow 0}$, as in class). Most of them will be trivially zero.

$$
\begin{array}{lll}
\langle 0| \mathcal{T}[\phi(\mathbf{x}) \phi(\mathbf{y})]|0\rangle, & \langle 0| \mathcal{T}[\psi(\mathbf{x}) \phi(\mathbf{y})]|0\rangle, & \langle 0| \mathcal{T}\left[\psi^{*}(\mathbf{x}) \phi(\mathbf{y})\right]|0\rangle \\
\langle 0| \mathcal{T}[\psi(\mathbf{x}) \psi(\mathbf{y})]|0\rangle, & \langle 0| \mathcal{T}\left[\psi^{*}(\mathbf{x}) \psi^{*}(\mathbf{y})\right]|0\rangle, & \langle 0| \mathcal{T}\left[\psi^{*}(\mathbf{x}) \psi(\mathbf{y})\right]|0\rangle .
\end{array}
$$

Any term in these expressions will contain either two annihilation operators, two creation operators, or a creation and an annihilation operator. It will vanish if there is an annihilation operator on the right or a creation operator on the left. Therefore, the only non-vanishing terms will be those with a creation operator on the right and an annihilation operator on the left. Furthermore, if these operators commute, then we will get zero, so it can be non-vanishing only if it is the same creation and annihilation operators. Looking at our operators, we quickly realize the only pairs that have matching operators are the propagators $\langle 0| \mathcal{T}[\phi(\mathbf{x}) \phi(\mathbf{y})]|0\rangle$ and $\langle 0| \mathcal{T}\left[\psi^{*}(\mathbf{x}) \psi(\mathbf{y})\right]|0\rangle$.

To work out the first of these, write everything out explicitly. Assume first that $x^{0}>y^{0}$, then we have

$$
\begin{aligned}
\langle 0| \phi(\mathbf{x}) \phi(\mathbf{y})|0\rangle & =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}}{(2 \pi)^{6}\left(4 \omega_{k} \omega_{k^{\prime}}\right)}\langle 0|\left(\gamma_{\vec{k}} e^{-i \mathbf{k} \cdot \mathbf{x}}+\gamma_{\vec{k}}^{\dagger} e^{i \mathbf{k} \cdot \mathbf{x}}\right)\left(\gamma_{\vec{k}^{\prime}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{y}}+\gamma_{\overrightarrow{k^{\prime}}}^{\dagger} e^{i \mathbf{k}^{\prime} \cdot \mathbf{y}}\right)|0\rangle \\
& =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}}{(2 \pi)^{6}\left(4 \omega_{k} \omega_{k^{\prime}}\right)} e^{i \mathbf{k}^{\prime} \cdot \mathbf{y}-\mathbf{i} \cdot \mathbf{x}}\langle 0|\left(\left[\gamma_{\vec{k}}, \gamma_{\vec{k}^{\prime}}^{\dagger}\right]+\gamma_{\vec{k}^{\prime}}^{\dagger}, \gamma_{\vec{k}}\right)|0\rangle \\
& =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}}{(2 \pi)^{6}\left(4 \omega_{k} \omega_{k^{\prime}}\right)} e^{i \mathbf{k}^{\prime} \cdot \mathbf{y}-\mathbf{i} \cdot \mathbf{x}}(2 \pi)^{3}\left(2 \omega_{k}\right) \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right)=\int \frac{e^{i \mathbf{k} \cdot(\mathbf{y}-\mathbf{x})} d^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{k}}
\end{aligned}
$$

This is the result if $x^{0}>y^{0}$. In the other case, of course, we simply interchange the roles of \mathbf{x} and \mathbf{y}. As in class, we then proceed to write this in a more manifestly Lorentz invariant fashion,

$$
\langle 0| \mathcal{T}[\phi(\mathbf{x}) \phi(\mathbf{y})]|0\rangle=\lim _{\varepsilon \rightarrow 0^{+}} \int \frac{d^{4} \mathbf{k}}{(2 \pi)^{4}} \frac{i e^{i \mathbf{k} \cdot(\mathbf{y}-\mathbf{x})}}{\left(\mathbf{k}^{2}-M^{2}+i \varepsilon\right)}
$$

We now need to repeat this for our other expression. Again assuming $x^{0}>y^{0}$, we have

$$
\begin{aligned}
\langle 0| \psi^{*}(\mathbf{x}) \psi(\mathbf{y})|0\rangle & =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}}{(2 \pi)^{6}\left(4 \omega_{k} \omega_{k^{\prime}}\right)}\langle 0|\left(\beta_{\vec{k}} e^{-i \mathbf{k} \cdot \mathbf{x}}+\alpha_{\vec{k}}^{\dagger} e^{i \mathbf{k} \cdot \mathbf{x}}\right)\left(\alpha_{\vec{k}^{\prime}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{y}}+\beta_{\overrightarrow{k^{\prime}}}^{\dagger} e^{i \mathbf{k}^{\prime} \cdot \mathbf{y}}\right)|0\rangle \\
& =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}}{(2 \pi)^{6}\left(4 \omega_{k} \omega_{k^{\prime}}\right)} e^{i \mathbf{k}^{\prime} \cdot \mathbf{y}-\mathbf{i k} \cdot \mathbf{x}}\langle 0|\left(\left[\beta_{\vec{k}}, \beta_{\vec{k}^{\prime}}^{\dagger}\right]+\beta_{\vec{k}^{\prime}}^{\dagger} \beta_{\vec{k}}\right)|0\rangle=\int \frac{e^{i \mathbf{k} \cdot(\mathbf{y}-\mathbf{x})} d^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{k}}
\end{aligned}
$$

When $y^{0}>x^{0}$ we have

$$
\begin{aligned}
\langle 0| \psi(\mathbf{y}) \psi^{*}(\mathbf{x})|0\rangle & =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}}{(2 \pi)^{6}\left(4 \omega_{k} \omega_{k^{\prime}}\right)}\langle 0|\left(\alpha_{\vec{k}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{y}}+\beta_{\overrightarrow{k^{\prime}}}^{\dagger} e^{i \mathbf{k}^{\prime} \cdot \mathbf{y}}\right)\left(\beta_{\vec{k}} e^{-i \mathbf{k} \cdot \mathbf{x}}+\alpha_{\vec{k}}^{\dagger} e^{i \mathbf{k} \cdot \mathbf{x}}\right)|0\rangle \\
& =\int \frac{d^{3} \vec{k} d^{3} \vec{k}^{\prime}}{(2 \pi)^{6}\left(4 \omega_{k} \omega_{k^{\prime}}\right)} e^{-i \mathbf{k}^{\prime} \cdot y+\mathbf{k} \cdot \mathbf{x}}\langle 0|\left(\left[\alpha_{\vec{k}^{\prime}}, \alpha_{\vec{k}}^{\dagger}\right]+\alpha_{\vec{k}}^{\dagger} \alpha_{\overrightarrow{k^{\prime}}}\right)|0\rangle=\int \frac{e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} d^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{k}}
\end{aligned}
$$

Once again, the only effect of $y^{0}>x^{0}$ is to interchange the role of \mathbf{x} and \mathbf{y}, so we again find

$$
\langle 0| \psi^{*}(\mathbf{x}) \psi(\mathbf{y})|0\rangle=\lim _{\varepsilon \rightarrow 0^{+}} \int \frac{d^{4} \mathbf{k}}{(2 \pi)^{4}} \frac{i e^{i \mathbf{k} \cdot(\mathbf{y}-\mathbf{x})}}{\left(\mathbf{k}^{2}-m^{2}+i \varepsilon\right)}
$$

The only difference is that the relevant mass for these particles is m, not M.

