
 Physics 744 - Field Theory 

 Solution Set 6 
 
1. [15] In the 4  theory: 

(a) [3] Draw all connected Feynman diagrams at the two loop level with a single 
  particle with momentum p  entering on the left and leaving on the right.  
There should be one diagram at the one-loop level, and three at the two loop 
level.  Do not take advantage of normal ordering.  Include the appropriate 
symmetry factor. 

(b) [4] Label all intermediate momenta.  Indicate which way the momentum is 
flowing in any intermediate propagators. 

 
 
 
 
 
 The four diagrams are sketched above.  The first has a symmetry factor of 1

2 , as 

we worked out in class, because the loop can be turned around.  The second one has a 
factor of 1

4 , since it has two such loops, while the third one also has a factor of 1
4 , 

because you can twist around the top loop and you can also interchange the two legs on 
the bottom loop.  The final diagram has a symmetry factor of 1

6 , because the three 

intermediate legs are all interchangeable. 
 I have included the momentum labels on each loop.  Which way you draw the 
arrows is arbitrary.  In the first two diagrams, there is one arbitrary momentum, and for 
the second one there are two.  In the third diagram there are again two, and it is clear that 
both sides of the lower loop have the same momentum k flowing around it.  In the final 
diagram, you can pick two of the intermediate legs to have arbitrary momenta, and the 
third leg can then be determined by conservation of momentm. 
 

(c) [8] Write the Feynman amplitude in each case.  Do not attempt to perform 
the integrals. 

 
 The Feynman amplitude is, in this case, 
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with each term corresponding to each of the four diagrams. 
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2. [10] Suppose you have two particles in the final state for some diagram.  You 
need to know the momentum of the final state particles.  Assume the total center 
of mass energy is E. 
(a) [6] Show that the momenta of the final state particles can be written as 
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 Well, the two momenta are equal and opposite, so call this p.  The energies of the 

two particles are 2 2
1 1E p m   and 2 2

2 2E p m  .  We therefore have 
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Obviously, I messed up the formula, but you can easily see what I meant. 
 

(b) [4] Simplify this formula in the cases (i) 2 0m   and (ii) 1 2m m m  . 

 
 If 2 0m  , we have 

 
2 2

24 4 2 2 2 2 1
1 1 1

1 1
2

2 2 2

E m
p E m E m E m

E E E


       

If 1 2m m m  , we have 
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3. [25] The Feynman invariant amplitude for muon decay: 

       1 2 3ee      p p p p  

 is given by 

  2 2
2 1 364 .Fi G   p p p p  

 Compared to the muon, the other particles are so light they can be treated as 
massless.  The constant 5 21.17 10  GeVFG     is a constant involved in weak 

decays called Fermi’s constant. 
(a) [6] Use conservation of four-momentum to relate the two dot-products 

appearing in this formula.  Working in the rest frame of the muon, write out 
this matrix element explicitly and show that it depends on only one of the 
final state energies. 

 
 By conservation of four-momentum, 1 2 3   p p p p .  Rearranging, this implies 

2 1 3   p p p p , which we then square to yield 
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Now, in the rest frame of the muon,  ,0,0,0m p , so that 2 2m E  p p .  It follows 

that 
2 21 1

1 3 2 22 2 .m m m E        p p p p  

Substituting into the Feynman amplitude, we find 
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(b) [6] Since the final state particles are massless, the three-momenta have 

magnitudes equal to their energies.  Use this plus conservation of energy to 
show that none of the final state particles has an energy greater than 1

2 m .  

Use this to write three inequalities on the energies E1 and E2.  Sketch the 
allowed region in E1-E2 space. 

 
 Well, the three momenta are vectors whose sum must add up to zero; i.e., they 
form a triangle.  The sum of the magnitudes must be the total energy, which is m .  So 

we have 
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The triangle inequality tells you that the sum of two sides is always longer than the third 
side.  It follows that 1 2 3p p p 

  
, and therefore 
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Of course, the same thing is true of the other two energies, so we have 
1

1 2 3 2, , .E E E m  

This looks like only two restrictions on the energies E1 and E2, but recall by conservation 
of energy that 3 1 2E m E E   .  Hence we have 
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Our three inequalities are therefore 
1 1 1

1 2 1 22 2 2, , and .E m E m E E m       

The corresponding allowed region is the shaded region in the 
sketch at right. 
 

(c) [8] Do the final state integrals and determine the decay rate of the muon.  
The lifetime is the reciprocal of this. 

 
 We must calculate the final state integrals.  The tricky part is figuring out the 
limits of integration.  For fixed E2, the range for E1 is clearly from 1

22 m E   to 1
2 m .  

The unrestricted range for E2 is then from 0 to 1
2 m .  We therefore have 
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(d) [5] The mass of the muon is 0.1057 GeVm  .  Find the lifetime 1    in 

seconds and compare to the experimental lifetime of 2.197 s  . 
 
 Substituting in the explicit values and throwing in a factor of 

256.528 10  GeV s   , we have 
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Taking the reciprocal, we have 1 2.15 s    .  That’s pretty close, really!  Not sure 
why there’s a remaining discrepancy, though part of the problem was that I didn’t give 
you GF accurately enough. 


