
 Physics 744 - Field Theory 

 Solution Set 7 
 
1. In the *   theory, consider the tree-level diagrams (no loops) contributing to 

the scattering        1 2 1 2* *    p p p p . 

(a) Draw all (two) Feynman diagrams that contribute to this process and label 
the intermediate momenta.  Write the corresponding Feynman amplitude. 

 
 
 
 

 
 The two diagrams are sketched above.  The Feynman invariant amplitude will be 
given by 
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We have neglected the i  contribution in the denominator.  This will be important if we 
are right on the energy of the intermediate particle, as can happen in the second term, but 
in that case we need to be more sophisticated about everything anyway. 
 

(b) Work out the differential cross-section in the center of mass frame.  You may 
write your answer in terms of the energies E of any one of the particles or the 
magnitude of the three-momentum p as needed.  Let   represent the angle 
between the initial and final momenta of the  ’s. 

 
 The square of any particle’s mass is just m2.  Since we are in the center of mass 
frame, the incoming particles have equal and opposite momenta.  Since they have the 
same mass, that means they have the same energy as well.  By conservation of 
momentum, the final particles must also have equal and opposite momenta, and since 
their masses are identical, their energies will be as well.  Hence all four particles have the 
same energy E and the same magnitude of their moment p, with 2 2 2E p m  . The dot 
products are not too difficult to work out: 
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The cross-section is then given by 
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where we simply declined to do the angular integral in the final step. 
 

(c) Are there any subtleties having to do with final momenta?  Find the total 
cross-section. 

 
 The final state particles are non-identical, so in this case there are no subtleties.  
We simply have to do the final integral.  The   integral is trivial, and we let 1 cosx    
to obtain 
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It isn’t pretty, but we’re done. 
 
 



2. We wish to work out the one loop contribution to the propagator  2p  for the 

  particle in the *   theory, using dimensional regularization. 
(a) Draw the relevant one loop diagram and write 

an expression for the Feynman amplitude. 
 
 
 The relevant Feynman diagram is sketched at right.  The Feynman amplitude is 
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(b) Combine the denominators using Feynman parameters.  Shift the integral to 

make it spherically symmetric. 
 
 Following the instructions, we have 
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(c) Regulate the integral using dimensional regularization in 4 2d    

dimensions.  Perform the momentum integrals. 
 
 We now switch to 4 2d    dimensions, and immediately perform the 
momentum integrals, using our formula.  We then have 
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(d) Multiply out all the factors, keeping terms of  1   and  1 , but 

dropping lower terms.  You may leave one Feynman parameter undone. 
 
 The small power can be approximated by   exp ln 1 lna a a     , and 

  1     .  Note that this   is Euler’s constant, having nothing to do with the 

coupling  .  We therefore have 
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The integrals are all doable, but we won’t go to the trouble of actually doing them. 
  

(e) Convince yourself, and me, that  2m  is always real.  Hence there is no 

problem calculating the counterterm. 
 
 If you substitute 2 2p m , this simplifies to 
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Now, each of the terms in the logarithm is positive, and therefore we can take the limit 
0   with impunity.  We can then add appropriate counterterms to make sure 

everything vanishes at p2 = m2. 
 



3. We wish to work out the one loop contribution to the propagator  2p  for the 

  particle in the *   theory, using dimensional 
regularization.  This was done in class, but I want 
you to redo it using dimensional regularization. 
(a-d) Same as previous problem. 

 
 The appropriate Feynman diagram is given above.  We now calculate 
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(e) Convince yourself, and me, that  2M  is real if 2M m .  If 2M m , find 

the imaginary part, and compare its value to the decay rate for the  , given 

by 2 2 2 24 16M m M    . 
 
 The problem, if any, must lie with the logarithm.  The logarithm is 

 2 2 2ln m M x x i     .  The function 2x x  rises from 0 to a maximum value of 1
4  at 

1
2x  , so the expression  2 2 2m M x x   is never smaller than 2 21

4m M , and if 

2M m , this is positive.  Hence we are simply taking the logarithm of a positive 

number, and therefore  2M  is real.  Hence we can add counterterms to make it go 

away. 
 If, on the other hand, 2M m , then for some values of x the logarithm will be of 
a negative number, which will yield a logarithm with an imaginary part.  The imaginary 

part is i  whenever  2 2 2m M x x   is negative, so we need to figure out when this 

happens.  Setting it equal to zero, we see that the places where it crosses the x-axis are 
when 
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The range of x-values where the function is negative is therefore 

2 2 2 21
42 1 4x x x m M m M        . 

The imaginary part of  2M  will therefore be 
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It is then easy to see that   2Im M M    .  This is not a coincidence, but we won’t 

go into it now. 
 

Useful formula:  
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