Physics 744 - Field Theory
Solution Set 8

1. Inthe wy¢ theory, calculate the unpolarized rate for
the decay ¢ — wy assuming M >2m for the case of (a) !
scalar coupling and (b) pseudoscalar coupling.

There is only one relevant Feynman diagram, sketched
above. The corresponding Feynman amplitude will be
iM=-ig(Oyv,) or iM=g(Uyy,)

We now want to multiply by the complex conjugate, which is the same as barring. Recall
when you bar something, you reverse the order of the arguments, and 7, =—y,. We

therefore have
|iM|2=gz(lTlv2)(\72ul) or |'M| (TrsV, ) (Vorsly)

We now want to sum over all final state spins (and average over incoming spins, except
there aren’t any). We use the usual trick of writing it as a trace so we can use our
identities on the sums of spins. We have:

MM =02 Tr(mv,vu)=g>> Tr(uby,y,)= 2Tr[(prl+m )(p, —m )]

$1:82 $1,S2 $1:82

=4g° (p1 p,—m? ) (scalar coupling)
z |i/\/l|2 = _gz z Tr(U175V2v275u1) = _gz Z Tr(u1LT175V2\7275)

51,52 51152 51,52

_ngr[(F{ﬁm)%(pz m )7 J 2Tr[(pl+m)(p(2+m)y52]
= 4g? (pl-p2+m ) (pseudo-scalar coupling)

The dot product will be given by p, -p, = E*+ p® = 2E? —m?. We therefore have

J' pdQ |z_\/E2—m2

INCEIZAE o zEttsls = 492(2E2_2m2)IdQ
gz le_m 3/2 gz M2—4m2 3/2
= (4 7 ) = ( VE ) (scalar),
_ 1 ¢ pdQ o0 NER-mME L,
E __1 =Y= 0 4g%(2E°- dQ
(O=>m) =l re, 2M = o (27 -m+me)]

(pseudo-scalar),
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2. Inthe ww¢ theory with pseudoscalar coupling, consider the scattering of
v (P)7(P2) = v (Ps)7 (Ps)-

(a) Draw the two relevant P1 > Ps >
Feynman diagrams and P1—Pa P1 P+ P2,
write the relevant < < p 4

Feynman amplitude. P2 Pa

The relevant Feynman diagrams have been sketched above. It is not hard to see
that if you swap the two outgoing arrows, one diagram turns into the other. So there is a
relative minus sign between the two diagrams, and the Feynman amplitude is

(U375U1)(\727/5V4) _ (U375V4 )(\72}/5U1 ):l

(pl_p3)2_M2 (p1+p2)2_M2

i/\/ligzl

(b) Sum and average the Feynman amplitude squared over outgoing and
incoming spin states respectively. Simplify the result in the ultrarelativistic
limit, so that we can neglect both m and M. The result should be quite
simple.

We want to sum over final spins and average over initial ones. We have

P2 fimf
9 z 37/5 275V4) _ (U375V4)(v275u1) [(U175u3)(\7475\/2) _ (\747/5u3)(U175V2)
1=Ps) =M (p+p,) =M? || (b -ps) -M*  (p,+p,) —M’
Tr(u3U375u1U175)Tr(V2v275V4v475) N TI‘(U3U3]/5V4V47/5)TF(V2V275U1U1]/5)
g* (2m2—2p1-p3—M2)2 (2m2+2pl-p2—M2)2
3 Tr (U3U375U1U175V2\7275V4\7475 ) +Tr (U3U37/5V4\74}/5V2\72}/5U1Ul}/5)
(2m* - 2p,-p, ~M?)(2m* +2p, -p, - M?)
Tr[(ps +m) s (Pt m)zs [Tr[ (P =m)7s (Pa—m) 7 |
(2m? —2p1-p3—M2)2
Tr[(Ps+m)7s (e —m) s | Tr[ (2 —m) 7 (o +m) s ]
g (2m2+2p1-p2—M2)2
4 [(V3+m)75 (p1+m)75 (,p(z )75 (VA 75}
(2 2p1 P;— )(Zm +2p1'p2
(
(2m

m)

M?)
Tr (s +m) s (22 -m) 7 (P - )%(Ffﬁm)%]

?=2p,-p;—M?)(2m* +2p,-p, - M?)




Tr| (s +m) (ps—m) |Tr[ (P —m)(p+m) |
(2m2—2p1-p3—M2)2
e[ Cpe+m) (i m) JTr] (e =m) (pu—m) |
(2m*+2p, -p, —Mz)2
Tr| (s +m) (g —m) (, —m) (P, +m)
(2m*—2p,-p, —M?)(2m* + 2p, -p, - M?)

B Tr[ (s +m)(pe +m)(p, —m)(p,—m)]
(2m?-2p,-p, - M?)(2m* +2p, -p, ~M?)

4
£l =5

We now set all the masses to zero, which simplifies things immensely:

Tr(pep ) Tr(pops) | Tr(paps) Tr(p.p.)

Y BN B OV
16| Tr(pppp.)+Tr(pp.p.p)
(P.-Ps)(Py-P,)
4(P.-Pa)(P2-Pa) , 4(P1-P2)(Ps-P)
g* (pl'p3)2 (pl'pz)z
4|, 2[(PyPa)(P2-Pa) * (Py P:)(Pa-Pa) ~(Py-Ps)(Pa-P2) ]|
(P,-Ps)(Py-P,)

If we work in the center of mass frame and let the angle of the final particles be &
compared to the initial angles, it isn’t hard to work out all the dot products:

PP, =Ps-P, = 2E7,
P1-Ps=Py-Py= Ez(l—COSQ),
P, P, =P, -P; = E*(1+cosH).

Substituting these in, we have

+

. ] ) g4 4E4 (1—C039)2 44E4 2|:E4 (1—0089)2 +4E4 — E4 (1+ C050)2i|
ZZ|'M| = 2 T rE 2c2
4 | E*(1-cos0) 4E 2E°E*(1-cos0)
g* 4-4cos@)| | s
[ D ———— = = 4 =
4 {8+ 1-cosd } 79" {8+4) =30

It can be shown that to reach this equation, we need only set M =0 ; the assumption
m =0 is not necessary.



(c) Calculate the differential and total cross-section.

We have
_ 1 pdQ L2 99°E
AV| = 1 - 29 E (4o,
dal 4Ezjl6ﬁ2(2E)4§:hAA| vl
do 9g*
dQ 2567°E?’
_99°
? T 6ar’E?

3. Inthe ww¢ theory with pseudoscalar coupling, consider the annihilation process
v(p)7 (p') > (k)4 (K)
() Write the two Feynman amplitudes. | found it useful to always write the

intermediate propagator in terms of the k and avoid k’. 1 also found it useful
to combine the two terms, as much as possible, before proceeding.

The two diagrams are sketched above. The diagrams differ by switching external
boson lines, so there is a relative plus sign between them. We have

_\7’75(p(—}(+m)7/5u+V75(J(—p(+m)7/5uil

| (k) -m? (k—p')° ~m?

_2_ V(—;X+K+m)u N V(p’—Ker)u ]
m’>—2p-k+M?-m*> m*-2p"-k+M?-m®

iM=ig?

gt o i (V)
| —2p-k+M° -2p"-k+M M“-2p"-k M°-2p-k

where we used the facts that pu=mu and \Tp =—mv' .

(b) Square and average over incoming spins.

We have

Y A e DAL (L

) LK emK]

2
. 1 1 / ' 2 212
_ _ 2(p-K)(p-K)=(p'-p)k2 —m?k?].




We then substitute k* = M?
(c) Calculate the differential and total cross-section for this annihilation process.
To simplify, ignore the mass M (treat the pseudoscalar as massless) but not
the mass m.

The equations get a lot simpler in the limit, since we then have

N _ g'(p -k pk
22 g(Zpk ZDKJ[Zpkpk ~0-0)- [pk p’-k ZJ

If the initial momenta are p =(E, 0,0, p) and p’=(E,0,0,—p), and we let the angle of
the final photon be &, then p-k =E(E - pcosd) and p'-k = E(E + pcos#), so

—Z|I/\/l| E—pcosd  E+pcosd _ 2g*p’cos’ O
E+pcos€ E - pcosé E? - p?cos?6

This gives us an annihilation differential cross-section of

St g5 DM = S
4E* 167° (2E)* 647°E* (E* - p* cos’ 0)

The relative velocity is 2p/E , so the differential cross-section is

do g*pcos’ @
dQ  1287°E(E’ - p’cos’ )

There is a subtlety involved with the total cross-section. The final state particles are
identical, and therefore when we add up all final states, we must avoid double counting.
This is most easily handled by only considering angles between 0 and 57 . Letting

Maple do the work of integrating for us, we find

h “n [Etanh™(p/E 4
O'=27Z'Id—o-d0089= gp an 3(|O/ )—i _ 9 {iztanhl(ﬁj—i}.
0 dQ p

647E p>| 64z |p E) pE

This can be shown to vanish in the non-relativistic approximation. In the relativistic
approximation, it diverges, but only logarithmically.



