Quantum Mechanics 741 – Midterm Equations

Basic Equations: $E = \hbar \omega = hf$ $\mathbf{p} = \hbar \mathbf{k}$ Important Operators	Schrödinger $i\hbar \frac{\partial}{\partial t} \Psi(t)\rangle = H \Psi(t)\rangle$ $E_n \psi_n\rangle = H \psi_n\rangle$ $ \Psi(t)\rangle = \sum_n c_n e^{-iE_n t/\hbar} \phi_n\rangle$	Hamiltonian: $H = \mathbf{P}^{2}/(2m) + V$ Commutators $[A, B] = AB - BA$ $\begin{bmatrix} R_{i}, P_{j} \end{bmatrix} = i\hbar \delta_{ij}$	Infinite Square Well $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$ $E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}$
$\mathbf{R}\psi = \mathbf{r}\psi$ $\mathbf{P}\psi = -i\hbar\nabla\psi$ $\mathbf{L} = \mathbf{R}\times\mathbf{P}$	$c_n = \left\langle \phi_n \middle \Psi(0) \right\rangle$ Probability Density	$\begin{bmatrix} R_i, R_j \end{bmatrix} = 0 = \begin{bmatrix} P_i, P_j \end{bmatrix}$ Expectation value	Complete Orthonormal Basisues $\langle \phi_i \phi_j \rangle = \delta_{ij}$
Harm. Oscillato $V = \frac{1}{2}m\omega^{2}X^{2}$ $ n\rangle: n = 0, 1, 2,$ $E_{n} = \hbar\omega\left(n + \frac{1}{2}\right)$ $\left[a, a^{\dagger}\right] = 1$ Symmetry	$\rho(\mathbf{r}) = \psi(\mathbf{r}) ^{2}$ $P(a < x < b) = \int_{a}^{b} \psi(x) ^{2}$ $1 = \int \psi(\mathbf{r}) ^{2} d^{3}\mathbf{r}$ Conjugation $ \psi\rangle^{\dagger} = \langle\psi , \langle\psi ^{\dagger} = \psi\rangle$ $\langle\psi A^{\dagger} \phi\rangle = \langle\phi A \psi\rangle^{*}$	$dx \qquad \text{and uncertainty} \\ \overline{A} = \langle A \rangle = \langle \Psi A \\ (\Delta A)^2 = \langle A^2 \rangle - \langle A \rangle \\ \Delta A \Delta B \ge \frac{1}{2} \langle i [A, A \rangle \\ \Delta X \Delta P \ge \frac{1}{2} \hbar \\ \text{Rotation (2D)} \\ [L, H] = 0$	$\frac{\operatorname{es}}{\Psi} \left \begin{array}{c} \sum_{i} \phi_{i}\rangle\langle\phi_{i} = 1\\ \langle\beta \alpha\rangle = \delta(\beta - \alpha)\\ \int d\alpha \alpha\rangle\langle\alpha = 1 \end{array} \right $ $\frac{\operatorname{Some Bras}}{\langle\mathbf{r} \psi\rangle = \psi(\mathbf{r})}$ $\langle\phi \psi\rangle \equiv \int \phi^{*}(\mathbf{r})\psi(\mathbf{r})d^{3}\mathbf{r}$
$T(\mathbf{a}) \mathbf{r}\rangle = \mathbf{r} + \mathbf{a} $ $R(\mathcal{R}) \mathbf{r}\rangle = \mathcal{R}\mathbf{r} $ $\Pi \mathbf{r}\rangle = -\mathbf{r}\rangle$ $T^{\dagger}(\mathbf{a})T(\mathbf{a}) = 1$ $R^{\dagger}(\mathcal{R})R(\mathcal{R}) = 1$	$\frac{1}{1} \qquad \begin{array}{c} \langle r r^{2} r^{2} \rangle \\ A^{\dagger} = A^{*T}, c^{\dagger} = c^{*} \\ \hline \text{Translation} \\ [P_{x}, H] = 0 \\ P_{x} k_{x} \rangle = \hbar k_{x} k_{x} \rangle \\ \psi = \phi(y, z) e^{ik_{x}x} \end{array}$	$ \begin{bmatrix} L & z^{\gamma} & J \\ L_{z} \psi \rangle = \hbar m \psi \rangle \\ m = 0, \pm 1, \pm 2, \dots \\ \psi (\rho, \theta) = R(\rho) e^{im\theta} \end{bmatrix} $	Measure A and get a: $P(a) = \sum_{n} \langle a, n \Psi \rangle ^{2}$ $ \Psi^{+}\rangle = \frac{\sum_{n} a, n\rangle \langle a, n \Psi \rangle}{\sqrt{P(a)}}$

The following equations you should memorize, and understand how to use them:

Other things you should know:

- How to do integrals in Cartesian and Spherical coordinates
- The general form of a wave function if its second derivative is proportional to itself or proportional to minus itself
- Which solutions are physically meaningful in typical situations (not divergent at infinity; incoming, reflected, and transmitted waves)
- How to match boundary conditions across a boundary, with or without a delta-function in the potential
- How to generalize from 1D potentials to many-D potentials (infinite square well and harmonic oscillator)
- How to deal with Hermitian conjugation of arbitrary expressions
- How to work out complicated commutators from simple ones

- The ideas behind coordinate bases, especially, orthonormal bases
- Matrix notation
- Hermitian operators have real eigenvalues, unitary have ones of magnitude one
- Both Hermitian operators and unitary operators have orthogonal eigenvectors
- How to find the eigenvalues and normalized eigenvectors of a matrix
- How to estimate ground state energies using the uncertainty principle
- If you perform a measurement of the operator A and get the result a, you are automatically in an eigenstate with this eigenvalue. If there is only one eigenvector with this eigenvalue, that's the state you are in.
- How to deal with multiple harmonic oscillators, coupled or uncoupled
- How to tell from the potential if there is a translation or a rotation symmetry (continuous or discrete)
- Symmetry operations have eigenvalues of magnitude one
- If repeating a symmetry operation *N* times brings it back where it started, then the eigenvalue must be an *N*'th root of one
- Complex eigenvalues for symmetry operations imply degenerate states

The following equations you need not memorize, but you should know how to use them if given to you:

Reflection from a step:		Probability Current:		Momentum bra	
$R = \left(\frac{\sqrt{E} - \sqrt{E - V_0}}{\sqrt{E} + \sqrt{E - V_0}}\right)^2 \qquad j$		$\mathbf{j} \equiv -\frac{i\hbar}{2m} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right)$		$\langle \mathbf{k} \psi \rangle = \int \frac{d^3 \mathbf{r}}{(2\pi)^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{r}} \psi(\mathbf{r})$	
T = 1 - R		$\mathbf{j} = \frac{n}{m} \operatorname{Im} \left(\Psi^* \nabla \Psi \right)$		Commutators	
Evolution of Expectation		Rotation Matrices 2D $\mathcal{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$		$\begin{bmatrix} AB, C \end{bmatrix} = A \begin{bmatrix} B, C \end{bmatrix} + \begin{bmatrix} A, C \end{bmatrix} B$	
$\frac{d}{dt}\langle A\rangle = \frac{i}{\hbar}\langle [H,A]\rangle + \langle \frac{\partial A}{\partial t}\rangle$				[A, BC] = B[A, C] + [A, B]C Symmetry Operations	
$\frac{d}{dt} \langle \mathbf{R} \rangle = \frac{1}{m} \langle \mathbf{P} \rangle$		Harmonic Oscillator	 P	$T(\mathbf{a}) = \exp(-i\mathbf{a} \cdot \mathbf{P}/\hbar)$ $(\mathcal{P}(\hat{\mathbf{n}}, \theta)) = \exp(-i\theta\hat{\mathbf{n}} \cdot \mathbf{I}/\hbar)$	
$\frac{d}{dt} \langle \mathbf{P} \rangle = \langle -\nabla V (\mathbf{R}) \rangle$		$X = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right)$		$T^{\dagger}(\mathbf{a})V(\mathbf{R})T(\mathbf{a}) = V(\mathbf{R} + \mathbf{a})$	
Coherent States: $a z\rangle = z z\rangle, \langle z a^{\dagger} = \langle z z^{*}$		$P = i\sqrt{\frac{\hbar m\omega}{2}} \left(a^{\dagger} - a\right) \qquad R$ $a n\rangle = \sqrt{n} n-1\rangle$ $a^{\dagger} n\rangle = \sqrt{n+1} n+1\rangle$		$^{\dagger}(\mathcal{R})V(\mathbf{R})R^{\dagger}(\mathcal{R})=V(\mathcal{R}\mathbf{R})$	
				$T^{\dagger}(\mathbf{a})\mathbf{P}T(\mathbf{a}) = \mathbf{P}$	
<i>N</i> 'th roots of unity: $e^{2\pi i j/N}$, $j = 0, 1,, N-1$				$R^{\dagger}(\mathcal{R})\mathbf{P}R(\mathcal{R}) = \mathcal{R}\mathbf{P}$	
		$a n - \sqrt{n+1} n+1 $		$R^{\dagger}(\mathcal{R})\mathbf{P}^{2}R(\mathcal{R})=\mathbf{P}^{2}$	