Quantum Mechanics 741 - Final Equations

Angular momentum $\begin{bmatrix} J_x, J_y \end{bmatrix} = i\hbar J_z, \text{ etc.}$ $\mathbf{J}^2 j, m \rangle = \hbar^2 (j^2 + j) j, m \rangle$ $J_z j, m \rangle = \hbar m j, m \rangle$		Examples of Angular Momentum-Like Operators L,S,J = L + S		Clebsch-Gordan: $\langle j_1, j_2; m_1, m_2 j, m \rangle$ non-zero only if: $ j_1 - j_2 \le j \le j_1 + j_2$ m + m = m - m - m - m		Wave Function with Spin $\psi(\mathbf{r},t) = \begin{pmatrix} \psi_s(\mathbf{r}) \\ \psi_{s-1}(\mathbf{r}) \\ \vdots \end{pmatrix}$
$j = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$ $m = j, j - 1, j - 2, \dots, -$ Adding Angular Mon	j	$\begin{bmatrix} Spin \\ Commut \\ \end{bmatrix} = \begin{bmatrix} S_i, R_j \end{bmatrix} =$	tes = 0	$ m_1 + m_2 = m, m \le m_1 \le m_1 \le m_1 \le m_1 \le m_2 $	$\geq J$ i_2	$\left \begin{array}{c} \psi_{-s}(\mathbf{r}) \right \\ \text{Spin of proton,} \\ \end{array} \right $
$j = j_1 - j_2 , j_1 - j_2 + 1, \dots, j_1$		$ \begin{array}{c c} & & \\ + & j_2 \end{array} & \begin{bmatrix} S_i, P_j \end{bmatrix} = 0 $		Operators $\begin{bmatrix} J_x, V_y \end{bmatrix} = i\hbar V_z$	Bosons and Fermions	
State Operator $\rho \equiv \sum_{i} f_{i} \psi_{i}\rangle \langle \psi_{i} $	$\operatorname{Tin}_{\left \Psi\left(t\right)\right\rangle}$	me Evolution: $P = U(t, t_0) \Psi(t) \Psi(t)$	$t_0)\rangle$	$\begin{bmatrix} J_x, V_z \end{bmatrix} = -i\hbar V_y$ $\begin{bmatrix} J_x, V_z \end{bmatrix} = 0 \text{ etc.}$	Bosons: $P \psi\rangle = \psi\rangle$ Fermi: $P \psi\rangle = \eta_P \psi\rangle$	
$Tr(\rho) = 1, \rho^{\dagger} = \rho$ Eigenvalues: $\rho_i \ge 0$	$i\hbar \frac{\partial}{\partial t}U$	$W(t,t_0) = HU(t)$	$\left(\frac{t_0}{Tr}\right)$	$\begin{array}{c} T \\ \hline T \\ \hline T \\ A \\ \hline \end{array} = \sum \langle \phi A \phi \rangle \end{array} $		ound State for N non- interaction particles Bosons: $F = NF$
$\langle A \rangle = \operatorname{Tr}(\rho A)$	ľ	Momentum $\pi = \mathbf{P} + e\mathbf{A}$	Tr	r(AB) = Tr(BA)	Fe	ermions: $E = \sum_{i=1}^{N} E_i$

The following new equations you should memorize, and understand how to use them:

Other things you should know:

- Understanding the concept of spin
- Addition of angular momentum, and when you can use it
- Especially, the resulting angular momentum when you add two angular momenta
- Clebsch-Gordan coefficients:
 - When they don't vanish
 - How you can use them to explicitly add angular momenta
 - o How you can use them in the Wigner-Eckart theorem
 - o How you can use them to do integrals of three Spherical Harmonics
- How a vector or scalar commutes with J
- (in principle) how a spherical tensor commutes with J
- Gauge transformations do not change the physics, and therefore theories must be gauge invariant
- (qualitatively) why certain gauge choices are better than others
- Be able to describe the Aharanov-Bohm experiment
- Tensor product spaces
- Generically, what a wave function for multiple particles looks like
- How to find exact eigenstates for N interchangeable non-interacting particles
- How to make these eigenstates completely symmetric/anti-symmetric for bosons/fermions
- The spin-statistics theorem

- How the degeneracy pressure calculation is done for fermions
- Generally, how different electrons are filled into orbitals for atoms
- The time evolution operator is linear and unitary; this allows you to prove things from it
- How to use the propagator to get the wave function at time t given it at time t_0
- How to get the state operator as a matrix, or to write it in terms of basis vectors
- How to tell if a state operator is legal; how to tell if it is a pure or mixed state
- How to evolve the state operator and use it for evaluating expectation values
- In the Heisenberg formalism, state vectors don't change, but operators do

The following new equations you need not memorize, but you should know how to use them if given to you:

Rotating with Spin $R(\mathcal{R})\psi(\mathbf{r}) = D(\mathcal{R})\psi(\mathcal{R}^{T}\mathbf{r})$ $D(\mathcal{R}(\hat{\mathbf{n}},\theta)) = \exp(-i\theta\hat{\mathbf{n}}\cdot\mathbf{S}/\mathcal{R}(\mathcal{R}(\hat{\mathbf{n}},\theta))) = \exp(-i\theta\hat{\mathbf{n}}\cdot\mathbf{J}/\mathcal{R})$	$ \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{h} \\ \hbar \end{array} \qquad \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \qquad \begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} $	Gauge formations = $\mathbf{A} + \nabla \chi$ $U - \partial \chi / \partial t$ = $\Psi e^{-ie\chi/\hbar}$	s $\frac{d}{dt}\langle \boldsymbol{\pi} \rangle$	Ehrenfest for E&M: $\frac{d}{dt} \langle \mathbf{R} \rangle = \frac{1}{m} \langle \boldsymbol{\pi} \rangle$ $= \frac{-e}{2m} \langle \boldsymbol{\pi} \times \mathbf{B} - \mathbf{B} \times \boldsymbol{\pi} \rangle - e \langle \mathbf{E} \rangle$				
EM Hamiltonian $H = \frac{1}{2m} \boldsymbol{\pi}^2 - eU + \frac{ge}{2m} \mathbf{B} \cdot \mathbf{S}$	$\mathbf{E}\mathbf{M} \ \mathbf{F}\mathbf{i}\mathbf{G}$ $\mathbf{B} = \nabla \mathbf{C}$ $\mathbf{E} = -\partial \mathbf{A}/\partial \mathbf{C}$	elds × \mathbf{A} $\partial t - \nabla U$		Fermi Energy and Pressure: $E_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$				
Wigner $\langle \alpha, j, m T_q^{(k)} \alpha', j', m' \rangle = \frac{1}{\sqrt{2}}$	$E = \frac{3}{5}NE_{F}$ $P_{F} = \frac{\hbar^{2}}{5m} (3\pi^{2})^{2/3} n^{5/3}$							
Integral of Spherical Harmonics: Non-zero requires $l_1 + l_2 - l$ even $\int d\Omega Y_l^m (\theta, \phi)^* Y_{l_1}^{m_1} (\theta, \phi) Y_{l_2}^{m_2} (\theta, \phi) = \sqrt{\frac{(2l_1+1)(2l_2+1)}{4\pi(2l+1)}} \langle l_1, l_2; 0, 0 l, 0 \rangle \langle l_1, l_2; m_1, m_2 l, m \rangle$								
Propagator: $\Psi(\mathbf{r},t) = \int d^{3}\mathbf{r}_{0}K(\mathbf{r},t;\mathbf{r}_{0},t_{0})$ $K(\mathbf{r},t;\mathbf{r}_{0},t_{0}) = \sum_{n} \phi_{n}(\mathbf{r})e^{-iE_{n}(\mathbf{r})}$	Free Propagator (1D): $K(x,t;x_0,t_0) = \sqrt{\frac{m}{2\pi i\hbar(t-t_0)}} \exp\left[\frac{im(x-x_0)^2}{2\hbar(t-t_0)}\right]$							
[_]		State 0 $i\hbar \frac{d}{dt}\rho$	Operators: $p = [H, \rho]$	Heisenberg Picture $\frac{d}{dt}A(t) = \frac{i}{\hbar} \Big[H(t), A(t) \Big]$				