Quantum Mechanics 741 - Final Equations

The following new equations you should memorize, and understand how to use them:

Other things you should know:

- Understanding the concept of spin
- Addition of angular momentum, and when you can use it
- Especially, the resulting angular momentum when you add two angular momenta
- Clebsch-Gordan coefficients:
o When they don't vanish
o How you can use them to explicitly add angular momenta
o How you can use them in the Wigner-Eckart theorem
o How you can use them to do integrals of three Spherical Harmonics
- How a vector or scalar commutes with \mathbf{J}
- (in principle) how a spherical tensor commutes with \mathbf{J}
- Gauge transformations do not change the physics, and therefore theories must be gauge invariant
- (qualitatively) why certain gauge choices are better than others
- Be able to describe the Aharanov-Bohm experiment
- Tensor product spaces
- Generically, what a wave function for multiple particles looks like
- How to find exact eigenstates for N interchangeable non-interacting particles
- How to make these eigenstates completely symmetric/anti-symmetric for bosons/fermions
- The spin-statistics theorem
- How the degeneracy pressure calculation is done for fermions
- Generally, how different electrons are filled into orbitals for atoms
- The time evolution operator is linear and unitary; this allows you to prove things from it
- How to use the propagator to get the wave function at time t given it at time t_{0}
- How to get the state operator as a matrix, or to write it in terms of basis vectors
- How to tell if a state operator is legal; how to tell if it is a pure or mixed state
- How to evolve the state operator and use it for evaluating expectation values
- In the Heisenberg formalism, state vectors don't change, but operators do

The following new equations you need not memorize, but you should know how to use them if given to you:

Rotating with Spin $R(\mathcal{R}) \psi(\mathbf{r})=D(\mathcal{R}) \psi\left(\mathcal{R}^{T} \mathbf{r}\right)$ Tra $D(\mathcal{R}(\hat{\mathbf{n}}, \theta))=\exp (-i \theta \hat{\mathbf{n}} \cdot \mathbf{S} / \hbar)$ U^{\prime} $R(\mathcal{R}(\hat{\mathbf{n}}, \theta))=\exp (-i \theta \hat{\mathbf{n}} \cdot \mathbf{J} / \hbar)$ Ψ	$\begin{aligned} & \text { uge } \\ & \text { rmations } \\ & +\nabla \chi \\ & -\partial \chi / \partial t \\ & \left\langle e^{-i e x / \hbar}\right. \end{aligned}$	Ehrenfest for E\&M:$\begin{gathered} \frac{d}{d t}\langle\mathbf{R}\rangle=\frac{1}{m}\langle\boldsymbol{\pi}\rangle \\ \frac{d}{d t}\langle\boldsymbol{\pi}\rangle=\frac{-e}{2 m}\langle\boldsymbol{\pi} \times \mathbf{B}-\mathbf{B} \times \boldsymbol{\pi}\rangle-e\langle\mathbf{E}\rangle \end{gathered}$			
$\begin{array}{c\|c} \begin{array}{c} \text { EM Hamiltonian } \\ H=\frac{1}{2 m} \boldsymbol{\pi}^{2}-e U+\frac{g e}{2 m} \mathbf{B} \cdot \mathbf{S} \end{array} & \begin{array}{c} \text { EM F } \\ \mathbf{B}=\nabla \\ \mathbf{E}=-\partial \mathbf{A} \end{array} \end{array}$	$\begin{gathered} \text { EM Fields } \\ \mathbf{B}=\nabla \times \mathbf{A} \\ \mathbf{E}=-\partial \mathbf{A} / \partial t-\nabla U \end{gathered}$		Fermi Energy and Pressure:$\begin{gathered} E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3} \\ E=\frac{3}{5} N E_{F} \\ P_{F}=\frac{\hbar^{2}}{5 m}\left(3 \pi^{2}\right)^{2 / 3} n^{5 / 3} \end{gathered}$		
Wigner-Eckart Theorem$\langle\alpha, j, m\| T_{q}^{(k)}\left\|\alpha^{\prime}, j^{\prime}, m^{\prime}\right\rangle=\frac{1}{\sqrt{2 j+1}}\left\langle\alpha, j\left\\|T^{(k)}\right\\| \alpha^{\prime}, j^{\prime}\right\rangle\left\langle j^{\prime}, k ; m^{\prime}, q \mid j, m\right\rangle$					
Integral of Spherical Harmonics: Non-zero requires $l_{1}+l_{2}-l$ even$\int d \Omega Y_{l}^{m}(\theta, \phi)^{*} Y_{l_{1}}^{m_{1}}(\theta, \phi) Y_{l_{2}}^{m_{2}}(\theta, \phi)=\sqrt{\frac{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)}{4 \pi(2 l+1)}}\left\langle l_{1}, l_{2} ; 0,0 \mid l, 0\right\rangle\left\langle l_{1}, l_{2} ; m_{1}, m_{2} \mid l, m\right\rangle$					
Propagator: $\begin{gathered} \Psi(\mathbf{r}, t)=\int d^{3} \mathbf{r}_{0} K\left(\mathbf{r}, t ; \mathbf{r}_{0}, t_{0}\right) \Psi\left(\mathbf{r}_{0}, t_{0}\right) \\ K\left(\mathbf{r}, t ; \mathbf{r}_{0}, t_{0}\right)=\sum_{n} \phi_{n}(\mathbf{r}) e^{-i E_{n}\left(t-t_{0}\right) / \hbar} \phi_{n}^{*}\left(\mathbf{r}_{0}\right) \end{gathered}$	Free Propagator (1D):$K\left(x, t ; x_{0}, t_{0}\right)=\sqrt{\frac{m}{2 \pi i \hbar\left(t-t_{0}\right)}} \exp \left[\frac{\operatorname{im}\left(x-x_{0}\right)^{2}}{2 \hbar\left(t-t_{0}\right)}\right]$				
	State Operators:$i \hbar \frac{d}{d t} \rho=[H, \rho]$		eisenberg Picture $(t)=\frac{i}{\hbar}[H(t), A(t)]$		

