
 Solutions to Quantum Mechanics Graduate Exam Summer 2024 
  
Each problem is worth 25 points.  The points for individual parts are marked in square brackets. 
To ensure full credit, show your work.  Do any four (4) of the following five (5) problems.  If 
you attempt all 5 problems, you must clearly state which 4 problems you want to have graded. 
Some possibly helpful formulas are given at the end of the exam.  
 
1. An electron is at rest in an oscillating magnetic field ( )0 ˆcosB tω=B z , where 0B  and ω 

are constants. 
(a) [2] Construct the Hamiltonian matrix for this system. 

 
 The Hamiltonian due to spin is given by ( )2H ge m= ⋅B S , where g is the gyromagnetic 
ratio (g = 2.002…), and e is the fundamental charge.  Keeping in mind that 1

2z zS σ=  , and zσ  is 
diagonal in the usual basis, we have 

( ) ( )0 0 1 0
cos cos .

0 12 2 4x
geB geBH t t

m m
σ ω ω

 
= ⋅ =  − 

  

 
(b) [10] The electron starts out (at t = 0) in the spin-up state with respect to the x-axis 

(that is, ( )0 xΨ = + ). Determine ( )tΨ  at subsequent times. 
 

 The state with spin in the +x-direction is given in this basis by ( )
110
12
 

Ψ =  
 

. This is 

our boundary condition.  Schrödinger’s equation is 

( ) ( ) ( ) ( )0 1 0
cos .

0 14
geBdi t H t t t

dt m
ω

 
− Ψ = Ψ = Ψ − 



  

If we write the two components of ( )tΨ  as a and b, for example, this would be 

( ) ( )0 01 0
cos cos .

0 14 4
a a ageB i geB id t t
b b bdt m m

ω ω
      

= =      − −      
 

This obviously splits into two nearly identical equations, namely 

( ) ( )0 0cos and cos .
4 4

geB geB ida dbi t a t b
dt m dt m

ω ω= = −  

Multiplying the first equation by dt/a and the second by dt/b and then integrating, we have 

( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

cos and cos ,
4 4

ln sin and ln sin .
4 4a b

geB geBda dbi t dt i t dt
a m b m

igeB igeBa t c b t c
m m

ω ω

ω ω
ω ω

= = −

= + = − +

∫ ∫ ∫ ∫
 



Exponentiating these two expressions, and making sure the initial values match at t = 0, we can 
solve for a and b and find 

( )
( )
( )

0

0

exp sin 41 .
exp sin 42

igEB t m
t

igEB t m

ω ω

ω ω

    Ψ =
 −   

 

 
(c) [6] Find the probability of getting 1

2−   if you measure Sx at time t. 
 
 To get the probability, we have to find ( )

2

y t− Ψ , which is 

( ) ( ) ( )
( )
( )

( ) ( )

( ) ( )

2
2 0

0

2

0 0

2 2
0 0

exp sin 41 11 1
exp sin 42 2

1 exp sin 4 exp sin 4
4
1 2 sin sin 4 sin sin 4 .
4

y y

igeB t m
P t

igeB t m

igeB t m igeB t m

i geB t m geB t m

ω ω

ω ω

ω ω ω ω

ω ω ω ω

    − = − Ψ = −
 −   

= − −      

= =      

 

 
(d) [7] What is the minimum field (B0) required to force a complete flip in Sx? 

 
 To get it to flip with 100% certainty, we need the argument of the outer sine function to 
at least reach 1

2π± .  Since the inner sine function never exceeds 1± , that means that the rest of 
the expression must exceed 1

2π , so 1
0 24geB mω π≥ , or in summary, 

0
2 .mB

ge
π ω

≥  

Note that if we approximate g = 2, we can simplify this a bit. 
 



2. A particle of mass m is in the ground state of an infinite square of length a, with allowed 
region 0 x a≤ ≤ .  Suddenly, the walls expand so that the right wall is now at x = 2a (and 
the left wall stays in the same place). 
(a) [5] What is the probability that, immediately after the wall has expanded, the 

particle will be found between (i) 0 ≤ x ≤ a, and (ii) a ≤ x ≤ 2a ? 
 
 In the sudden approximation, the wave function doesn’t change when you move the walls.  
Since the wave function was entirely in the first region, it will still be there, so the probabilities 
in the two cases are (i) 100% and (ii) 0%. 
 

(b) [15] What is the probability that if you measured the energy you would get 
2 2

28
E

ma
π

=
 ? 

 
 For this we need the eigenstates of both the initial and final infinite square well. For the 
initial infinite square well, we have 

( )
2 2

2

2 sin ,
2n n

nxx E
a a ma

π πψ  = = 
 

  

For the final infinite square well, the wave functions and energies are the same, except we 
substitute a  2a.  The ground state is n = 1.  Simply substituting a  2a, we see that we are 
asked if it is still in the ground state.  The probability of going from the ground state to some 
other state in the sudden approximation is 

( ) 2
1 1

2 2

20 0

2 2 2sin sin sin sin .
2 2 2

n n

a a

P

nx x nx xdx dx
a a a a a a a

ψ ψ ψ ψ

π π π π

′ ′→ =

       = =       
       ∫ ∫

 

The integrals were only performed up to a because the initial wave function cuts off there. In 
particular, the probabilities for going to two lowest energy states are 

( )

( )

22

1 1 2 20 0

2 2 2

2 2 2 2
0

2
1 2 2 0

2 2 1sin sin cos cos
2 2 2 2

1 2 2 1 2 2 1 8 32sin sin ,
2 2 3 2 2 3 2 3 9

2 sin

a a

a

a

x x x xP dx dx
a a a a a a

a x a x a a a
a a a a a

xP dx
a a

π π π πψ ψ

π π
π π π π π π

πψ ψ

        ′→ = = −                

      = − = + = =            

 ′→ =  
 

∫ ∫

2

2 0

2
2 2

0

2 1 21 cos
2

1 2 1 1sin .
2 2 2 2

a

a

x dx
a a

a xx a
a a a

π

π
π

  = −     

  = − = =    

∫ ∫
 



 If converted to probabilities, these work out to 36% and 50% respectively, so it is clear 
that these two are the most likely cases, since all others add up to less than 14%. 
 

(c) [5] Assume that you got the energy given in part (b). If the right wall is now slowly 
returned to x = a, what would be the most likely result of an energy measurement, 
and what would be the probability of obtaining that result? 

 
 As the wall is slowly moved back, we can use the adiabatic approximation, which says 
that the n’th eigenstate goes to the n’th eigenstate.  In particular, the ground state will go to the 

ground state, so the final energy will be 
2 2

1 22
E

ma
π

=
 , with a probability of 100%. 

 
 
3. A particle of mass m lies in a three-dimensional attractive power-law potential, 

( ) 3/2V r Ar−= − . Using the variational principle, estimate the energy of the ground state 

using the unnormalized trial wave function ( ) re λψ −=r . Can we be sure that this 
potential actually has a bound state? 

 
 We start by calculating the normalization integral ψ ψ , as well as the expectation 
values of the potential and the kinetic term.  We have 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( )
( )

( ) ( ) ( )
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ψ ψ ψ ψ
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ππ
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Γ
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 ∂ ∂
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 Γ Γ
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∫
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3
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We now put it all together to get the expectation value of the energy E as a function of the 
variational parameter λ: 

( )
2 3 2 2 2

3 2
3 2

1 .
2 2 2 22

PH AE V A
m m m

λ π π π λ πλ λ
ψ ψ ψ ψ π λ λ

   
 = = + = − = − 
    

   

We need to find the minimum of this function, which we do by setting the derivative to zero, 
which yields 



( )
2

1 2

2 2

42

30 ,
2 2

3 9, .
82 2

d E A
d m

mA A m

λ πλ λ
λ

π πλ λ

= = −

= =







 

Substituting this back into the energy, we get an estimate of the ground state energy,  

( )
2 3 22 2 2 2 2 2 4 3 2 4 3 2 4 3

min 4 4 6 6 6

9 9 81 27 27 .
2 8 8 2 128 32 128

A m A m A m A m A mE A
m

π π π π π πλ
   

= − = − = −   
   



    

 

The actual energy must be smaller than this (more negative), and hence there must truly be a 
bound state, even if this isn’t exactly the right energy. 
 
4. A particle of mass m lies in a symmetric 2D harmonic oscillator with potential  

( )2 2 21
2V m x yω= + . In addition, there is a small perturbation ( )z y xW L xp ypγ γ= = − . 

(a) [4] Find the eigenstates and energies of the unperturbed Hamiltonian.  You do not 
need to give explicit forms for these eigenstates, it is sufficient to simply label them 
as, say, ,x yn n .  Check that the ground state is non-degenerate, but the first excited 

state is degenerate. 
 
 Since this is just the sum of two ordinary Harmonic oscillators, the states are indeed of 
the form ,x yn n  and have energy ( ) ( ) ( )1 1

2 2 1
x yn n x y x yE n n n nω ω ω= + + + = + +     The 

ground state is 0,0  with energy ω , and the first excited states are 1,0  and 0,1  with energy 
2 ω . 

 
(b) [9] Show that the ground state is an exact eigenstate of the perturbed Hamiltonian. 

 
 It is already an exact eigenstate of the unperturbed Hamiltonian.  The perturbation can be 
written in terms of raising and lowering operators as 

( ) ( )( ) ( )( )
( ) ( )

† † † †

† † † †1
2

2 2

2 2 .

y x x x y y y y x x

y x x y y x x y

mW xp yp i a a a a a a a a
m

i a a a a i a a a a

ωγ γ
ω

γ γ

 = − = + − − + − 

= − = −

 

 

 

It is then obvious that ( )† †0,0 0,0 0 .y x x yW i a a a aγ= − =  

 
(c) [12] Find the energies of the first excited states to first order in γ, and the 

corresponding eigenstates to leading order. 
 
 We need to find all matrix elements of the form a W b  using these two states. We first 
see that 



( )
( )

† † †

† † †

1,0 1,0 1,0 0,1 ,

0,1 0,1 0,1 1,0 .

y x x y y x

y x x y x y

W i a a a a i a a i

W i a a a a i a a i

γ γ γ

γ γ γ

= − = =

= − = − = −

  

  

 

We now write the perturbation matrix as 

10 10 10 01 0
.

01 10 01 01 0
W W i

W
W W i

γ
  − 

= =   
  



  

The final matrix is the Pauli matrix yσ  and has eigenvalues 1± .  The corresponding 
eigenvectors can be found by solving 

0
,

0
and .

i a a
i b b

ib a ia b

−     
= ±     

     
= = ±

 

So b ia= ± , and if we normalize them then 2 2 21 2a b a= + = , we have states 
11

2 i
 

± =  ± 
. 

 This gives us our perturbed states and eigenvalues 

 ( )1
2

1,0 0,1 , with energy 2 .i E ω γ±± = ± = ±   

Incidentally, since these two states are not mixed by W at all with any other energy states, these 
eigenstates and eigenvalues are exact as well. 
 
5. A measurement corresponding to observable A, has two normalized eigenstates 1ψ  

and 2ψ  with eigenvalues a1 and a2 respectively.  A second measurement 

corresponding to observable B, has two normalized eigenstates 1φ  and 2φ  with 
eigenvalues b1 and b2 respectively.  The eigenstates are related by  

3 4
1 1 25 5ψ φ φ= +     ; 34

2 1 25 5ψ φ φ= −  

(a) [8] Observable A is measured, and the value a1 is obtained.  What is the state of the 
wave function Ψ  immediately after this measurement? 

 
 When a measurement is performed, the state vector will collapse into an eigenstate of the 
corresponding operator, with eigenvalue equal to the measured quantity.  Since we obtained the 
eigenvalue a1 the wave function must be in an eigenstate of A with this eigenvalue a1.  This state 
is uniqualy determined, up to an irrelevant phase, to be the state 1ψ , so we must have 

1ψΨ =  
 
 
 



(b) [8] If B is now measured, what are the possible results, and what are their 
probabilities? 

 
 In general, the only possible outcome of a measurement is the eigenvalues of the 
corresponding operator, so the outcome must be b1 or b2.  The corresponding probability is just 
the square of the amplitude of the corresponding wave functions, we  

( )

( )

2 22 2 3 3 94
1 1 1 1 1 1 1 25 5 5 25

2 22 2 3 164 4
2 2 2 1 2 1 2 25 5 5 25

,

.

P b

P b

φ φ ψ φ φ φ φ

φ φ ψ φ φ φ φ

= Ψ = = + = =

= Ψ = = + = =
 

Depending on the outcome of the measurement, the system will now be in the quantum state 1φ  

or 2φ  if the measurement yielded b1 or b2 respectively. 
 

(c) [9] Assume in part (b) that the result yielded result b1. Right after the measurement 
of B, A is measured again. What is the probability of getting the value a1 again?  
How would your answer be different if the measurement in part (b) had been b2 
instead? 

 
 If the B measurement had yielded b1, then the wave function would now be 1φ , and the 
probability would be 

( ) 2 22 2 3 3 94
1 1 1 1 1 1 1 2 15 5 5 25 .P a b ψ ψ φ φ φ φ φ= Ψ = = + = =  

Similarly, if the measurement of B had yielded b2, then the probability would be 

( ) 2 22 2 3 164 4
1 2 1 1 2 1 1 2 25 5 5 25 .P a b ψ ψ φ φ φ φ φ= Ψ = = + = =  

We can also address the question of what the probability of outcome a1 would be if we didn’t 
know the outcome of the first measurement, though we weren’t asked that. 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 29 16 81 256 337
1 1 1 1 2 1 2 25 25 625 625 625 .P a P b P a b P b P a b= + = + = + =  

 
 

 


