Physics 741 – Graduate Quantum Mechanics 1 Solutions to Chapter 10

2. [10] A system of more than two particles is an eigenstate of every pair switching operator, that is, $P(i \leftrightarrow j) |\psi\rangle = \lambda_{ij} |\psi\rangle$ for every $i \neq j$.

(a) [3] For *i*, *j*, and *k* all different, simplify the product $P(i \leftrightarrow j)P(i \leftrightarrow k)P(i \leftrightarrow j)$.

If we start on the right, we see that i goes to j, then it is left alone, then it goes to i again. We see that j goes to i, and then to k, and there it stays. Finally, k doesn't go anywhere at first, then it goes to i, and from there to j. Putting it all together, we see that

$$P(i \leftrightarrow j)P(i \leftrightarrow k)P(i \leftrightarrow j) = P(j \leftrightarrow k)$$

(b) [4] Demonstrate that $\lambda_{ik} = \lambda_{jk}$ for any *i*, *j*, and *k* all different.

We assume that our wave function is an eigenstate of all pair switching operators. We have

$$(i \leftrightarrow j) P(i \leftrightarrow k) P(i \leftrightarrow j) |\psi\rangle = P(j \leftrightarrow k) |\psi\rangle$$
$$\lambda_{ij} \lambda_{ik} \lambda_{ij} |\psi\rangle = \lambda_{jk} |\psi\rangle$$
$$\lambda_{ik} \lambda_{ij}^{2} = \lambda_{jk}$$

We know that if we do a pair switching twice, you end up back where you started, which tells you $\lambda_{ij}^2 = 1$, so $\lambda_{ik} = \lambda_{jk}$.

(c) [3] Argue that for any pair λ_{ij} and λ_{kl} , $\lambda_{ij} = \lambda_{kl}$, whether there are any matches or not. Hence there is only one common eigenvalue for all pair switchings.

The order on the subscripts doesn't matter, $\lambda_{ij} = \lambda_{ji}$ since they represent the same pair switching. There are three cases: no indices match, one index matches, and both indices match. If both match, we have $\lambda_{ij} = \lambda_{ij}$, which is trivial. If one matches, we have $\lambda_{ik} = \lambda_{jk}$ from part (b). If neither matches, then we can argue that $\lambda_{ij} = \lambda_{il} = \lambda_{kl}$, since the intermediate one matches one index in each case. So we're done! 3. [15] Three particles lie in identical harmonic oscillators, with Hamiltonian

$$H = \sum_{i=1}^{3} \left(P_i^2 / 2m + \frac{1}{2}m\omega^2 X_i^2 \right)$$

(a) [5] If the particles are not identical, find the three lowest energies, give me a list of all quantum states having those energies, and tell me the degeneracy (number of states with that energy) for each.

Each harmonic oscillator has an energy of $E_i = \hbar \omega \left(n_i + \frac{1}{2} \right)$, so for the three harmonic oscillators together, the energy is

$$E = \hbar \omega \left(n_1 + n_2 + n_3 + \frac{3}{2} \right)$$

for the state $|n_1n_2n_3\rangle$ The smallest energies come when

 $n_1 + n_2 + n_3$ is as small as possible, or 0, 1, or 2. The table at right gives the full answer to this question. The "#" tells the degeneracy.

(b) [5] Repeat part (a) if the three particles are all bosons. I still want three energies, but I am not guaranteeing that the energies will be the same.

The energies *will* be the same, we just have to symmetrize the wave functions. This reduces the degeneracy considerably.

(c) [5] Repeat part (a) if the three particles are all fermions.

This time the ground state is the anti-symmetrized $|012\rangle$, which has a higher energy. We can then go up by one unit in $n_1 + n_2 + n_3$ to get the next two energies. It turns out only the third energy is degenerate.

E	states	#
$\frac{9}{2}\hbar\omega$	$\frac{1}{\sqrt{6}} \left(\left 012 \right\rangle + \left 120 \right\rangle + \left 201 \right\rangle - \left 021 \right\rangle - \left 210 \right\rangle - \left 102 \right\rangle \right)$	1
$\frac{11}{2}\hbar\omega$	$\frac{1}{\sqrt{6}} \left(\left 013 \right\rangle + \left 130 \right\rangle + \left 301 \right\rangle - \left 031 \right\rangle - \left 310 \right\rangle - \left 103 \right\rangle \right)$	1
$\frac{13}{2}\hbar\omega$	$\frac{\frac{1}{\sqrt{6}} \left(\left 023 \right\rangle + \left 230 \right\rangle + \left 302 \right\rangle - \left 032 \right\rangle - \left 320 \right\rangle - \left 203 \right\rangle \right),$ $\frac{1}{\sqrt{6}} \left(\left 014 \right\rangle + \left 140 \right\rangle + \left 401 \right\rangle - \left 041 \right\rangle - \left 410 \right\rangle - \left 104 \right\rangle \right)$	2

	$\frac{5}{2}\hbar\omega$	001 angle, 010 angle, 100 angle	3
	$\frac{7}{2}\hbar\omega$	$ \begin{array}{l} 011\rangle, 101\rangle, 110\rangle, \\ 002\rangle, 020\rangle, 200\rangle \end{array} $	6
σl	nt gives	the full answer to thi	S

 $|000\rangle$

1

 $\frac{3}{2}\hbar\omega$

Ε	states	#
$\frac{3}{2}\hbar\omega$	000 angle	1
$\frac{5}{2}\hbar\omega$	$\frac{1}{\sqrt{3}} \left(\left 001 \right\rangle + \left 010 \right\rangle + \left 100 \right\rangle \right)$	1
$\frac{7}{2}\hbar\omega$	$\frac{1}{\sqrt{3}} \left(\left 011 \right\rangle + \left 101 \right\rangle + \left 110 \right\rangle \right),$ $\frac{1}{\sqrt{3}} \left(\left 002 \right\rangle + \left 020 \right\rangle + \left 200 \right\rangle \right)$	2