Solutions to Chapter 1

5. [10] For each of the wave functions in question 4 , find $\bar{x}, \Delta x, \bar{p}, \Delta p$, and check that the uncertainty relationship $(\Delta x)(\Delta p) \geq \frac{1}{2} \hbar$ is satisfied.
(a) [5] $\psi(x)=(A / \pi)^{1 / 4} \exp \left(i K x-\frac{1}{2} A x^{2}\right)$.
(b) $[5] \psi(x)=\sqrt{\alpha} \exp (-\alpha|x|)$.

We simply work out each case in a straightforward manner. For part (a), we have

$$
\begin{aligned}
\bar{x} & =\int_{-\infty}^{\infty} x \psi^{*}(x) \psi(x) d x=\sqrt{\frac{A}{\pi}} \int_{-\infty}^{\infty} x e^{-i K x-A x^{2} / 2} e^{i K x-A x^{2} / 2} d x=\sqrt{\frac{A}{\pi}} \int_{-\infty}^{\infty} x e^{-A x^{2}} d x=0, \\
(\Delta x)^{2} & =\int_{-\infty}^{\infty}(x-\bar{x})^{2} \psi^{*}(x) \psi(x) d x=\sqrt{\frac{A}{\pi}} \int_{-\infty}^{\infty} x^{2} e^{-A x^{2}} d x=\sqrt{\frac{A}{\pi}} \Gamma\left(\frac{3}{2}\right) A^{-3 / 2}=\sqrt{\frac{A}{\pi}} \frac{\sqrt{\pi}}{2 A^{3 / 2}}=\frac{1}{2 A}, \\
\bar{p} & =\frac{\hbar}{\sqrt{\pi A}} \int_{-\infty}^{\infty} k \tilde{\psi}^{*}(k) \psi(k) d k=\frac{\hbar}{\sqrt{\pi A}} \int_{-\infty}^{\infty} k e^{-(k-K)^{2} / A} d k=\frac{\hbar}{\sqrt{\pi A}} \frac{\hbar}{\sqrt{\pi A}} \int_{-\infty}^{\infty}(k+K) e^{-k^{2} / A} d k \\
& =\frac{\hbar}{\sqrt{\pi A}}[0+K \sqrt{\pi A}]=\hbar K, \\
(\Delta p)^{2} & =\frac{1}{\sqrt{\pi A}} \int_{-\infty}^{\infty}(\hbar k-\hbar K)^{2} \tilde{\psi}^{*}(k) \psi(k) d k=\frac{\hbar^{2}}{\sqrt{\pi A}} \int_{-\infty}^{\infty}(k-K)^{2} e^{-(k-K)^{2} / A} d k= \\
& =\frac{\hbar^{2}}{\sqrt{\pi A}} \int_{-\infty}^{\infty} k^{2} e^{-k^{2} / A} d k=\frac{\hbar^{2}}{\sqrt{\pi A}} \Gamma\left(\frac{3}{2}\right) A^{3 / 2}=\frac{\hbar^{2}}{\sqrt{\pi A}} \frac{1}{2} \sqrt{\pi} A^{3 / 2}=\frac{1}{2} \hbar^{2} A .
\end{aligned}
$$

In summary, $\Delta x=1 / \sqrt{2 A}, \Delta p=\hbar \sqrt{A / 2}$, and $(\Delta x)(\Delta p)=\frac{1}{2} \hbar$, so the inequality is just barely satisfied. For part (b), we have

$$
\begin{aligned}
\bar{x} & =\alpha \int_{-\infty}^{\infty} x e^{-2 \alpha|x|} d x=\alpha \int_{0}^{\infty} x e^{-2 \alpha x} d x+\alpha \int_{-\infty}^{0} x e^{2 \alpha x} d x=\alpha \int_{0}^{\infty} x e^{-2 \alpha x} d x-\alpha \int_{0}^{\infty} x e^{-2 \alpha x} d x=0, \\
(\Delta x)^{2} & =\alpha \int_{-\infty}^{\infty} x^{2} e^{-2 \alpha|x|} d x=2 \alpha \int_{0}^{\infty} x^{2} e^{-2 \alpha x} d x=\frac{2 \alpha}{(2 \alpha)^{3}} \Gamma(3)=\frac{2}{4 \alpha^{2}}=\frac{1}{2 \alpha^{2}}, \\
\bar{p} & =\frac{\hbar \alpha(2 \alpha)^{2}}{2 \pi} \int_{-\infty}^{\infty} \frac{k d k}{\left(k^{2}+\alpha^{2}\right)^{2}}=\frac{2 \hbar \alpha^{3}}{\pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi} \frac{\alpha \tan \theta \alpha \sec ^{2} \theta d \theta}{\left(\alpha^{2} \tan ^{2} \theta+\alpha^{2}\right)^{2}}=\frac{2 \hbar \alpha}{\pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi} \sin \theta \cos \theta d \theta=0, \\
(\Delta p)^{2} & =\frac{\alpha(2 \alpha)^{2}}{2 \pi} \int_{-\infty}^{\infty} \frac{(\hbar k)^{2} d k}{\left(k^{2}+\alpha^{2}\right)^{2}}=\frac{2 \hbar^{2} \alpha^{3}}{\pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi} \frac{\alpha^{2} \tan ^{2} \theta \alpha \sec ^{2} \theta d \theta}{\left(\alpha^{2} \tan ^{2} \theta+\alpha^{2}\right)^{2}}=\frac{2 \hbar^{2} \alpha^{2}}{\pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi} \sin ^{2} \theta d \theta \\
& =\frac{2 \hbar^{2} \alpha^{2}}{\pi} \frac{\pi}{2}=\hbar^{2} \alpha^{2} .
\end{aligned}
$$

In summary, $\Delta x=1 / \alpha \sqrt{2}, \Delta p=\hbar \alpha$, and $(\Delta x)(\Delta p)=\hbar / \sqrt{2}$, which also works.
6. [10] A particle of mass m lies in the harmonic oscillator potential, given by $V(x)=\frac{1}{2} m \omega^{2} x^{2}$. Later we will solve this problem exactly, but for now, we only want an approximate solution.
(a) [4] Let the uncertainty in the position be $\Delta x=a$. What is the corresponding minimum uncertainty in the momentum Δp ? Write an expression for the total energy (kinetic plus potential) as a function of a.

By the uncertainty principle, $(\Delta x)(\Delta p) \geq \frac{1}{2} \hbar$, so if $\Delta x=a$, then $\Delta p \geq \hbar / 2 a$. The formula for the energy is

$$
E=\frac{p^{2}}{2 m}+V(x)=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

Now, the minimum energy classically would occur when $p=0$ and $x=0$, but this is impossible quantum mechanically because we cannot know them exactly. Assuming x and p actually take on values approximately equal to their uncertainties, the corresponding energy would be

$$
E \approx \frac{\hbar^{2}}{8 m a^{2}}+\frac{1}{2} m \omega^{2} a^{2}
$$

(b) [6] Find the minimum of the energy function you found in (a), and thereby estimate the minimum energy (called zero point energy) for a particle in a harmonic oscillator. Your answer should be very simple.

To find the minimum energy, we simply take the derivative of the function we just found and set it to zero

$$
\begin{aligned}
0 & =\frac{d E}{d a}=-\frac{\hbar^{2}}{4 m a^{3}}+m \omega^{2} a, \\
\hbar^{2} & =4 m^{2} \omega^{3} a^{4} \\
a^{2} & =\frac{\hbar}{2 m \omega}
\end{aligned}
$$

You now simply plug this back into the energy formula to find

$$
E=\frac{\hbar^{2}}{8 m} \frac{2 m \omega}{\hbar}+\frac{1}{2} m \omega^{2} \frac{\hbar}{2 m \omega}=\frac{1}{4} \hbar \omega+\frac{1}{4} \hbar \omega=\frac{1}{2} \hbar \omega
$$

This answer is, in fact, exactly correct, and the derivation can be shown to be exact as well, but this is a coincidence special to the harmonic oscillator.

