
Physics 741 – Graduate Quantum Mechanics 1 

Solutions to Chapter 3 
 
3.1 [5] Prove Schwartz’s inequality,      , , , ,        .  You may prove it however 

you want; however, here is one way to prove it.  Expand out the inner product of 
a b   with itself, which must be positive, where a and b are arbitrary complex 

numbers.  Then substitute in  ,a    and  ,b    .  Simplify, and you should have 

the desired result. 
 
 We take the suggestion given, hoping it will not lead us astray.  We note that b is real, so 

 * ,b b     , while a is not, so    ** , ,a      . 
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We now rearrange this and divide by  ,   to give      , , , ,        , the desired 

relationship.  The only detail that might be unclear is that in the ultimate step, we divided by 
 ,  .  This is valid, provided  , 0   , which is guaranteed for 0  .  Of course, if 0  , 

then both sides of Schwartz’s inequality are zero, and the result is trivially true. 
 
3.2 [15] Our goal in this problem is to develop an orthonormal basis for polynomial 

functions on the interval  1,1 , with inner product defined by 

   
1 *

1
.f g f x g x dx


    Consider the basis function n , for 0,1,2,n   , defined by 

  n
n x x  . 

(a) [7] Find the inner product n m   for arbitrary n, m, and then use (3.25) to produce 

a set of orthogonal states n  for n up to 4. 

 
 The inner product is simply 

 
   1 11 1

1 1

1 1 2 1 if  even,

1 1 0 if  odd.
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We now simply produce a set of orthonormal states following the prescription given in (3.25): 

 
 

 

0 0

1 1 0 0 1 0 0 1

12 2
2 2 0 0 2 0 0 2 0 0 2 0 0 2 0 2 03 1 3

32 2
3 2 1 1 3 1 1 3 1 1 3 1 1 3 1 3 15 3 5

,

,
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4 4 0 0 4 0 0 2 2 4 2 2

1
2 0 430 4 1

4 0 2 03 1 1
0 0 2 0 2 03 3

2 2 1 2
5 7 3 5 90 421 1 1

4 0 2 0 4 0 2 03 5 126 140 70 32 2 1 2 1 2
1 5 3 3 9 1

6 6 31 2
4 0 2 0 4 2 05 7 7 7 35

2
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(b) [6] Now produce a set of orthonormal states n  using (3.26) for n up to 4. 

 
 This is now straightforward.  We find 

 

  
   

   

  
   

 

1
0 0 0 0 022

10 0 0 0

3
1 1 1 122

31 1

1 1
2 2 0 2 03 32 1 2 1 21 1

5 3 3 9 12 0 2 03 3

45 51 1
2 0 2 08 3 2 2

3 3
3 3 1 3 15 53 92 2 23 3

7 5 5 25 33 1 3 15 5

175 3 1
3 18 5

1 1 1
,

1 1

1 1

2

3 ,

1 1
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7
3 12 2

6 3
4 4 2 07 35

6 3 6 3
4 2 0 4 2 07 35 7 35

6 3
4 2 07 356 3 36 6 3 92 2 2 2 2 2

9 7 7 35 5 49 5 7 35 3 1225 1

11025 6 3 3
4 2 0 4 2 0128 7 35 8 2

5 3 ,

1

1

2 2 2

35 30 3 .

 

   
     

  

     



   
   

  
             

     
 

 
(c) [2] Compare the resulting polynomials with Legendre polynomials.  How are they 

related? 
 
 The Legendre polynomials can be found in a variety of sources, such as Wikipedia.  The 
first five are 

                2 3 4 21 1 1
0 1 2 3 42 2 81, , 3 1 , 5 3 , 35 30 3 .P x P x x P x x P x x x P x x x          

Comparing with the expressions above, we see that 



 
               
   

3 5 71
0 0 1 1 2 0 3 32 2 2 2

3
4 42

, , , ,

.

x P x x P x x P x x P x

x P x

   



      

 
 

The pattern is clear:    2 1
2
n

n nx P x   . 

 
 


