## Physics 741 - Graduate Quantum Mechanics 1

## Solutions to Chapter 3

3.1 [5] Prove Schwartz's inequality, $(\phi, \psi)(\psi, \phi) \leq(\phi, \phi)(\psi, \psi)$. You may prove it however you want; however, here is one way to prove it. Expand out the inner product of $a \phi+b \psi$ with itself, which must be positive, where $\boldsymbol{a}$ and $\boldsymbol{b}$ are arbitrary complex numbers. Then substitute in $a=(\phi, \psi)$ and $b=-(\phi, \phi)$. Simplify, and you should have the desired result.

We take the suggestion given, hoping it will not lead us astray. We note that $b$ is real, so $b^{*}=b=-(\phi, \phi)$, while $a$ is not, so $a^{*}=(\phi, \psi)^{*}=(\psi, \phi)$.

$$
\begin{aligned}
0 & \leq(a \phi+b \psi, a \phi+b \psi)=a^{*} a(\phi, \phi)+a^{*} b(\phi, \psi)+b^{*} a(\psi, \phi)+b^{*} b(\psi, \psi) \\
& =(\psi, \phi)(\phi, \psi)(\phi, \phi)-(\psi, \phi)(\phi, \phi)(\phi, \psi)-(\phi, \phi)(\phi, \psi)(\psi, \phi)+(\phi, \phi)(\phi, \phi)(\psi, \psi) \\
& =-(\phi, \phi)(\phi, \psi)(\psi, \phi)+(\phi, \phi)(\phi, \phi)(\psi, \psi) .
\end{aligned}
$$

We now rearrange this and divide by $(\phi, \phi)$ to $\operatorname{give}(\phi, \psi)(\psi, \phi) \leq(\phi, \phi)(\psi, \psi)$, the desired relationship. The only detail that might be unclear is that in the ultimate step, we divided by $(\phi, \phi)$. This is valid, provided $(\phi, \phi)>0$, which is guaranteed for $\phi \neq 0$. Of course, if $\phi=0$, then both sides of Schwartz's inequality are zero, and the result is trivially true.
3.2 [15] Our goal in this problem is to develop an orthonormal basis for polynomial functions on the interval $[-1,1]$, with inner product defined by
$\langle f \mid g\rangle=\int_{-1}^{1} f^{*}(x) g(x) d x$. Consider the basis function $\left|\phi_{n}\right\rangle$, for $n=0,1,2, \ldots$, defined by $\phi_{n}(x)=x^{n}$.
(a) [7] Find the inner product $\left\langle\phi_{n} \mid \phi_{m}\right\rangle$ for arbitrary $n, m$, and then use (3.25) to produce a set of orthogonal states $\left|\phi_{n}^{\prime}\right\rangle$ for $\boldsymbol{n}$ up to 4.

The inner product is simply

$$
\left\langle\phi_{n} \mid \phi_{m}\right\rangle=\int_{-1}^{1} x^{n} x^{m} d x=\left.\frac{x^{n+m+1}}{n+m+1}\right|_{-1} ^{1}=\frac{1-(-1)^{n+m+1}}{n+m+1}=\left\{\begin{array}{cc}
2 /(n+m+1) & \text { if } n+m \text { even } \\
0 & \text { if } n+m \text { odd }
\end{array}\right.
$$

We now simply produce a set of orthonormal states following the prescription given in (3.25):

$$
\begin{aligned}
& \left|\phi_{0}^{\prime}\right\rangle=\left|\phi_{0}\right\rangle, \\
& \left|\phi_{1}^{\prime}\right\rangle=\left|\phi_{1}\right\rangle-\left|\phi_{0}^{\prime}\right\rangle\left\langle\phi_{0}^{\prime} \mid \phi_{1}\right\rangle /\left\langle\phi_{0}^{\prime} \mid \phi_{0}^{\prime}\right\rangle=\left|\phi_{1}\right\rangle, \\
& \left|\phi_{2}^{\prime}\right\rangle=\left|\phi_{2}\right\rangle-\left|\phi_{0}^{\prime}\right\rangle\left\langle\phi_{0}^{\prime} \mid \phi_{2}\right\rangle /\left\langle\phi_{0}^{\prime} \mid \phi_{0}^{\prime}\right\rangle=\left|\phi_{2}\right\rangle-\left|\phi_{0}\right\rangle\left\langle\phi_{0} \mid \phi_{2}\right\rangle /\left\langle\phi_{0} \mid \phi_{0}\right\rangle=\left|\phi_{2}\right\rangle-\left|\phi_{0}\right\rangle\left(\frac{2}{3} / \frac{2}{1}\right)=\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle \\
& \left|\phi_{3}^{\prime}\right\rangle=\left|\phi_{2}\right\rangle-\left|\phi_{1}^{\prime}\right\rangle\left\langle\phi_{1}^{\prime} \mid \phi_{3}\right\rangle /\left\langle\phi_{1}^{\prime} \mid \phi_{1}^{\prime}\right\rangle=\left|\phi_{3}\right\rangle-\left|\phi_{1}\right\rangle\left\langle\phi_{1} \mid \phi_{3}\right\rangle /\left\langle\phi_{1} \mid \phi_{1}\right\rangle=\left|\phi_{3}\right\rangle-\left|\phi_{1}\right\rangle\left(\frac{2}{5} / \frac{2}{3}\right)=\left|\phi_{3}\right\rangle-\frac{3}{5}\left|\phi_{1}\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
\left|\phi_{4}^{\prime}\right\rangle & =\left|\phi_{4}\right\rangle-\left|\phi_{0}^{\prime}\right\rangle\left\langle\phi_{0}^{\prime} \mid \phi_{4}\right\rangle /\left\langle\phi_{0}^{\prime} \mid \phi_{0}^{\prime}\right\rangle-\left|\phi_{2}^{\prime}\right\rangle\left\langle\phi_{2}^{\prime} \mid \phi_{4}\right\rangle /\left\langle\phi_{2}^{\prime} \mid \phi_{2}^{\prime}\right\rangle \\
& =\left|\phi_{4}\right\rangle-\left|\phi_{0}\right\rangle \frac{\left\langle\phi_{0} \mid \phi_{4}\right\rangle}{\left\langle\phi_{0} \mid \phi_{0}\right\rangle}-\left(\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle\right) \frac{\left(\left\langle\phi_{2}\right|-\frac{1}{3}\left\langle\phi_{0}\right|\right)\left|\phi_{4}\right\rangle}{\left(\left\langle\phi_{2}\right|-\frac{1}{3}\left\langle\phi_{0}\right|\right)\left(\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle\right)} \\
& =\left|\phi_{4}\right\rangle-\left|\phi_{0}\right\rangle \frac{2}{5}-\left(\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle\right) \frac{\frac{2}{7}-\frac{1}{3} \cdot \frac{2}{5}}{\frac{2}{5}-2 \cdot \frac{1}{3} \cdot \frac{2}{3}+\frac{1}{9} \cdot \frac{2}{1}}=\left|\phi_{4}\right\rangle-\frac{1}{5}\left|\phi_{0}\right\rangle-\frac{90-42}{126-140+70}\left(\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle\right) \\
& =\left|\phi_{4}\right\rangle-\frac{1}{5}\left|\phi_{0}\right\rangle-\frac{6}{7}\left|\phi_{2}\right\rangle+\frac{2}{7}\left|\phi_{0}\right\rangle=\left|\phi_{4}\right\rangle-\frac{6}{7}\left|\phi_{2}\right\rangle+\frac{3}{35}\left|\phi_{0}\right\rangle .
\end{aligned}
$$

(b) [6] Now produce a set of orthonormal states $\left|\phi_{n}^{\prime \prime}\right\rangle$ using (3.26) for $\boldsymbol{n}$ up to 4.

This is now straightforward. We find

$$
\begin{aligned}
&\left|\phi_{0}^{\prime \prime}\right\rangle=\frac{1}{\sqrt{\left\langle\phi_{0}^{\prime} \mid \phi_{0}^{\prime}\right\rangle}}\left|\phi_{0}^{\prime}\right\rangle=\frac{1}{\sqrt{\left\langle\phi_{0} \mid \phi_{0}\right\rangle}}\left|\phi_{0}\right\rangle=\frac{1}{\sqrt{\frac{2}{1}}}\left|\phi_{0}\right\rangle=\sqrt{\frac{1}{2}}\left|\phi_{0}\right\rangle, \\
&\left|\phi_{1}^{\prime \prime}\right\rangle=\frac{1}{\sqrt{\left\langle\phi_{1} \mid \phi_{1}\right\rangle}}\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{\frac{2}{3}}}\left|\phi_{1}\right\rangle=\sqrt{\frac{3}{2}}\left|\phi_{1}\right\rangle \\
&\left|\phi_{2}^{\prime \prime}\right\rangle=\frac{1}{\sqrt{\left(\left\langle\phi_{2}\right|-\frac{1}{3}\left\langle\phi_{0}\right|\right)\left(\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle\right)}}\left(\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle\right)=\frac{1}{\sqrt{\frac{2}{5}-2 \cdot \frac{1}{3} \cdot \frac{2}{3}+\frac{1}{9} \cdot \frac{2}{1}}} \\
&=\sqrt{\frac{45}{8}}\left(\left|\phi_{2}\right\rangle-\frac{1}{3}\left|\phi_{0}\right\rangle\right)=\frac{1}{2} \sqrt{\frac{5}{2}}\left(3\left|\phi_{2}\right\rangle-\left|\phi_{0}\right\rangle\right), \\
&\left|\phi_{3}^{\prime \prime}\right\rangle=\frac{1}{\left.\sqrt{\left(\left\langle\phi_{3}\right|-\frac{3}{5}\right.}\left|\phi_{0}\right\rangle\right)} \\
&=\sqrt{\frac{175}{8}}\left(\left|\phi_{1}\right\rangle-\frac{3}{5}\left|\phi_{1}\right\rangle\right)=\frac{1}{2} \sqrt{\frac{7}{2}}\left(5\left|\phi_{3}\right\rangle-\frac{3}{5}\left|\phi_{1}\right\rangle\right) \\
&\left.\left|\phi_{3}^{\prime \prime}\right\rangle-3\left|\phi_{3}\right\rangle-\frac{3}{5}\left|\phi_{1}\right\rangle\right)=\frac{1}{\sqrt{\frac{2}{7}-2 \cdot \frac{3}{5} \cdot \frac{2}{5}+\frac{9}{25} \cdot \frac{2}{3}}}\left(\left|\phi_{3}\right\rangle-\frac{3}{5}\left|\phi_{1}\right\rangle\right) \\
&=\frac{1}{\sqrt{\left(\left\langle\phi_{4}\right|-\frac{6}{7}\left\langle\phi_{2}\right|+\frac{3}{35}\left\langle\phi_{0}\right|\right)\left(\left|\phi_{4}\right\rangle-\frac{6}{7}\left|\phi_{2}\right\rangle+\frac{3}{35}\left|\phi_{0}\right\rangle\right)}}\left(\left|\phi_{4}\right\rangle-\frac{6}{7}\left|\phi_{2}\right\rangle+\frac{3}{35}\left|\phi_{0}\right\rangle\right) \\
&=\frac{1}{\sqrt{\frac{2}{9}-2 \cdot \frac{6}{7} \cdot \frac{2}{7}+2 \cdot \frac{3}{35} \cdot \frac{2}{5}+\frac{36}{49} \cdot \frac{2}{5}-2 \cdot \frac{6}{7} \cdot \frac{3}{35} \cdot \frac{2}{3}+\frac{9}{1225} \cdot \frac{2}{1}}}\left(\left|\phi_{4}\right\rangle-\frac{6}{7}\left|\phi_{2}\right\rangle+\frac{3}{35}\left|\phi_{0}\right\rangle\right) \\
&=\sqrt{\frac{11025}{128}}\left(\left|\phi_{4}\right\rangle-\frac{6}{7}\left|\phi_{2}\right\rangle+\frac{3}{35}\left|\phi_{0}\right\rangle\right)=\frac{3}{8 \sqrt{2}}\left(35\left|\phi_{4}\right\rangle-30\left|\phi_{2}\right\rangle+3\left|\phi_{0}\right\rangle\right) .
\end{aligned}
$$

## (c) [2] Compare the resulting polynomials with Legendre polynomials. How are they related?

The Legendre polynomials can be found in a variety of sources, such as Wikipedia. The first five are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) .
$$

Comparing with the expressions above, we see that

$$
\begin{aligned}
& \phi_{0}^{\prime \prime}(x)=\sqrt{\frac{1}{2}} P_{0}(x), \quad \phi_{1}^{\prime \prime}(x)=\sqrt{\frac{\sqrt{3}}{2}} P_{1}(x), \quad \phi_{2}^{\prime \prime}(x)=\sqrt{\frac{5}{2}} P_{0}(x), \quad \phi_{3}^{\prime \prime}(x)=\sqrt{\frac{7}{2}} P_{3}(x), \\
& \phi_{4}^{\prime \prime}(x)=\frac{3}{\sqrt{2}} P_{4}(x) .
\end{aligned}
$$

The pattern is clear: $\phi_{n}^{\prime \prime}(x)=\sqrt{\frac{2 n+1}{2}} P_{n}(x)$.

