Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 3

3.1 [5] Prove Schwartz’s inequality, (4, )(v,¢4) <(4,¢)(w.,y). You may prove it however

you want; however, here is one way to prove it. Expand out the inner product of
ag + by with itself, which must be positive, where a and b are arbitrary complex

numbers. Then substitute in a=(¢,) and b=—(¢,¢). Simplify, and you should have

the desired result.

We take the suggestion given, hoping it will not lead us astray. We note that b is real, so
b"=b=—(4,4), while ais not, so a" = (¢,l//)* =(v.9).

0<(ag+by,ap+by)=a'a(d,¢)+ab(sy)+ba(y.¢)+bb(y.yw)
=(v.9)(¢v)(¢:6) - (v.0)(8.4)(¢:v) ~(4.0) (8. ) (v.4)+(¢:6)(4.0) (w.v)
==(¢:0)(¢:v)(v.9)+(¢.4)(4:8) (v-v).-
We now rearrange this and divide by (¢4,¢) to give(¢,v)(v,¢)<(4,4)(v.w), the desired

relationship. The only detail that might be unclear is that in the ultimate step, we divided by
(¢,4). This is valid, provided (¢,¢) >0, which is guaranteed for ¢ = 0. Of course, if ¢=0,

then both sides of Schwartz’s inequality are zero, and the result is trivially true.

3.2 [15] Our goal in this problem is to develop an orthonormal basis for polynomial
functions on the interval [-1,1], with inner product defined by

<f |g> = J‘_ll f*(x)g(x)dx. Consider the basis function |¢n> ,for n=0,1,2,..., defined by

g, (x)=x".
(a) [7] Find the inner product (¢, |4, ) for arbitrary n, m, and then use (3.25) to produce

a set of orthogonal states |¢r:> for n up to 4.

The inner product is simply

n+m+1 1

_1—(—1)"“"“_ 2/(n+m+1) ifn+m even,
n+m+1|71_ n+m+1 0 if n+m odd.

(¢,|¢,) = J. X"X"dx =

We now simply produce a set of orthonormal states following the prescription given in (3.25):
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(b) [6] Now produce a set of orthonormal states ¢r:'> using (3.26) for n up to 4.

This is now straightforward. We find
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(¢) [2] Compare the resulting polynomials with Legendre polynomials. How are they
related?

The Legendre polynomials can be found in a variety of sources, such as Wikipedia. The
first five are

R(x)=1 R(x)=x, P(x)=1(3x"-1), P(x)=1(5x-3x)., P,(x)=4(35x"-30x"+3).

Comparing with the expressions above, we see that



#(X) =P (x). #(X)=\3R (%), #(x)=\3R (%), #(x)=3P (x).
qﬁ’(x):%a(x).

The pattern is clear: ¢ (x)=/2%2P, (x).



