Solutions to Chapter 3

3.5 [5] Prove the parity operator Π, defined by (3.40) is both Hermitian and unitary.

To show it is Hermitian, we must show that $\langle\phi| \Pi|\psi\rangle^{*}=\langle\psi| \Pi|\phi\rangle$, so

$$
\langle\phi| \Pi|\psi\rangle^{*}=\left[\int d^{3} \mathbf{r} \phi^{*}(\mathbf{r}) \psi(-\mathbf{r})\right]^{*}=\int d^{3} \mathbf{r} \psi^{*}(-\mathbf{r}) \phi(\mathbf{r})=\int d^{3} \mathbf{r} \psi^{*}(\mathbf{r}) \phi(-\mathbf{r})=\langle\psi| \Pi|\phi\rangle
$$

Now that we know it is Hermitian, we can take advantage of this to show that

$$
\Pi^{\dagger} \Pi \psi(\mathbf{r})=\Pi^{2} \psi(\mathbf{r})=\Pi \psi(-\mathbf{r})=\psi(\mathbf{r})
$$

Since this is true for all wave functions, it follows that $\Pi^{\dagger} \Pi=1$.
3.6 [15] Consider the Hermitian matrix: $H=E_{0}\left(\begin{array}{cc:c}0 & 3 i & 0 \\ -3 i & 8 & 0 \\ \hdashline 0 & 0 & 8\end{array}\right)$

(a) [10] Find all three eigenvalues and eigenvectors of \boldsymbol{H}.

Removing the common factor of E_{0} we note that H is block-diagonal, as I have sketched in with dashed lines in the problem itself, reducing the matrix to a 2×2 matrix and a trivial 1×1 matrix:

$$
H_{2}=\left(\begin{array}{cc}
0 & 3 i \\
-3 i & 8
\end{array}\right) \text { and } H_{1}=(8)
$$

The matrix H_{1} has eigenvalue 8 , and eigenvector (1), which makes it trivial. The eigenvalues of matrix H_{2} can be found using the characteristic equation

$$
0=\operatorname{det}\left(H_{2}-\lambda \mathbf{1}\right)=\left(\begin{array}{cc}
-\lambda & 3 i \\
-3 i & 8-\lambda
\end{array}\right)=\lambda^{2}-8 \lambda-(3 i)(-3 i)=\lambda^{2}-8 \lambda-9=(\lambda-9)(\lambda+1)
$$

This has solutions $\lambda=9$ and $\lambda=-1$. To find each of these values, we put in an arbitrary vector and solve the eigenvalue equation. For example, for $\lambda=9$, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 3 i \\
-3 i & 8
\end{array}\right)\binom{\alpha}{\beta}=9\binom{\alpha}{\beta}, \\
& \binom{3 i \beta}{-3 i \alpha+8 \beta}=\binom{9 \alpha}{9 \beta} .
\end{aligned}
$$

The first of these equations implies $\beta=-3 i \alpha$; if we plug this into the second, we find that it is also automatically satisfied. We also want the eigenvector normalized, so

$$
1=|\alpha|^{2}+|\beta|^{2}=10|\alpha|^{2}
$$

We have an arbitrary phase to choose; if we pick α to be real and positive, $\alpha=1 / \sqrt{10}$, and we have the eigenvector

$$
|9\rangle=\frac{1}{\sqrt{10}}\binom{1}{-3 i}
$$

For the other eigenvector, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 3 i \\
-3 i & 8
\end{array}\right)\binom{\alpha}{\beta}=-\binom{\alpha}{\beta}, \\
& \binom{3 i \beta}{-3 i \alpha+8 \beta}=\binom{-\alpha}{-\beta}
\end{aligned}
$$

Both equations imply $\beta=i \alpha / 3$. Our normalization condition becomes

$$
1=|\alpha|^{2}+|\beta|^{2}=\frac{10}{9}|\alpha|^{2}
$$

Once again we pick α to be real and positive, $\alpha=3 / \sqrt{10}$, and we have the eigenvector

$$
|-1\rangle=\frac{1}{\sqrt{10}}\binom{3}{i}
$$

Returning to the full three-dimensional space and restoring E_{0}, our eigenvectors are

$$
\left|-E_{0}\right\rangle=\frac{1}{\sqrt{10}}\left(\begin{array}{l}
3 \\
i \\
0
\end{array}\right), \quad\left|9 E_{0}\right\rangle=\frac{1}{\sqrt{10}}\left(\begin{array}{c}
1 \\
-3 i \\
0
\end{array}\right), \quad\left|8 E_{0}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Your answers might be slightly different, in that the phases could be different, or the eigenvectors could be listed in a different order.
(b) [5] Construct the unitary matrix V which diagonalizes H. Check explicitly that $V^{\dagger} V=1$ and $V^{\dagger} H V=H^{\prime}$ is real and diagonal.

The unitary matrix V just consists of the eigenvectors listed in any order, so we have

$$
V=\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0 \\
\frac{i}{\sqrt{10}} & -\frac{3 i}{\sqrt{10}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Your answer could be different, in that the columns could come in a different order, and each column could be multiplied by an arbitrary phase.

We have ahead of us some boring matrix multiplication.

$$
\begin{aligned}
V^{\dagger} V & =\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & -\frac{i}{\sqrt{10}} & 0 \\
\frac{1}{\sqrt{10}} & \frac{3 i}{\sqrt{10}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0 \\
\frac{i}{\sqrt{10}} & -\frac{3 i}{\sqrt{10}} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\frac{9}{10}+\frac{1}{10} & \frac{3}{10}-\frac{3}{10} & 0 \\
\frac{3}{10}-\frac{3}{10} & \frac{1}{10}+\frac{9}{10} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
V^{\dagger} H V & =E_{0}\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & -\frac{i}{\sqrt{10}} & 0 \\
\frac{1}{\sqrt{10}} & \frac{3 i}{\sqrt{10}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 3 i & 0 \\
-3 i & 8 & 0 \\
0 & 0 & 8
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0 \\
\frac{i}{\sqrt{10}} & -\frac{3 i}{\sqrt{10}} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =E_{0}\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & -\frac{i}{\sqrt{10}} & 0 \\
\frac{1}{\sqrt{10}} & \frac{3 i}{\sqrt{10}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-\frac{3}{\sqrt{10}} & \frac{9}{\sqrt{10}} & 0 \\
-\frac{i}{\sqrt{10}} & -\frac{27 i}{\sqrt{10}} & 0 \\
0 & 0 & 8
\end{array}\right)=E_{0}\left(\begin{array}{ccc}
-\frac{9}{10}-\frac{1}{10} & \frac{27}{10}-\frac{27}{10} & 0 \\
-\frac{3}{10}+\frac{3}{10} & \frac{9}{10}+\frac{81}{10} & 0 \\
0 & 0 & 8
\end{array}\right)=E_{0}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 8
\end{array}\right)
\end{aligned}
$$

As you can see, $V^{\dagger} V=1$ and $V^{\dagger} H V$ is real and diagonal (and has the eigenvalues on its diagonal).

