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Solutions to Chapter 3 
 
3.5 [5] Prove the parity operator  , defined by (3.40) is both Hermitian and unitary. 
 

 To show it is Hermitian, we must show that 
*      , so 
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Now that we know it is Hermitian, we can take advantage of this to show that 
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Since this is true for all wave functions, it follows that † 1   . 
 
 

3.6 [15] Consider the Hermitian matrix: 0
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(a) [10] Find all three eigenvalues and eigenvectors of H. 
 
 Removing the common factor of E0 we note that H is block-diagonal, as I have sketched 
in with dashed lines in the problem itself, reducing the matrix to a 2  2 matrix and a trivial 1  1 
matrix: 
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The matrix H1 has eigenvalue 8, and eigenvector (1), which makes it trivial.  The eigenvalues of 
matrix H2 can be found using the characteristic equation 
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This has solutions 9   and 1   .  To find each of these values, we put in an arbitrary vector 
and solve the eigenvalue equation.  For example, for 9  , we have 
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The first of these equations implies 3i   ; if we plug this into the second, we find that it is 
also automatically satisfied.  We also want the eigenvector normalized, so 
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We have an arbitrary phase to choose; if we pick  to be real and positive, 1 10  , and we 
have the eigenvector 
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For the other eigenvector, we have 
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Both equations imply 3i  .  Our normalization condition becomes 
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Once again we pick   to be real and positive, 3 10  , and we have the eigenvector 
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 Returning to the full three-dimensional space and restoring E0, our eigenvectors are 
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Your answers might be slightly different, in that the phases could be different, or the 
eigenvectors could be listed in a different order. 

 
(b) [5] Construct the unitary matrix V which diagonalizes H.  Check explicitly that 

† 1V V  and †V HV H   is real and diagonal. 
 
 The unitary matrix V just consists of the eigenvectors listed in any order, so we have 
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Your answer could be different, in that the columns could come in a different order, and each 
column could be multiplied by an arbitrary phase. 
 We have ahead of us some boring matrix multiplication. 
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As you can see, † 1V V   and †V HV  is real and diagonal (and has the eigenvalues on its 
diagonal). 
 

 
  

 


