Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 5

5.1 [10] The Lennard-Jones 6-12 potential is commonly used as a model to describe the
potential of an atom in the neighborhood of another atom. Classically, the energy is

given by E =1mx’ +4(9[(a/x)12 —(a/x)q.
(a) [6] Find the minimum X, of this potential, and expand the potential to quadratic
order in (X—X_;, ).

The potential is minimized when the derivative vanishes, so we have
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The minimum of this potential is therefore x , =2"°c . If we expand this potential out to order

(X=X )2,We have
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(b) [4] Determine the classical frequency @, and calculate the quantum mechanical
minimum energy, as a function of the various parameters.

The Harmonic oscillator is normally written as E =1mx’ +1kx*>. Comparing this with
our energy expression, we see that the role of the spring constant is played by the combination
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The angular frequency is given by @ = k / m, so we have
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The ground state energy is normally E, =17, but the energy has been shifted downwards by

an amount —¢& , so we have
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5.2 [10] Att=0, a single particle is placed in a harmonic oscillator H = P>/2m+1mo’X” in

the superposition state“P (t= O)> =2|1)+£|2), that is, in a superposition of the first and
second excited states.

(a) [3] What is the wave function “P (t)> at subsequent times?

The wave function has been written in terms of eigenstates of the Hamiltonian, so this

makes it relatively easy. The energy of the state |n> is ha)(n + %) , and therefore the state will
evolve as
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(b) [7] What are the expectation values <X> and <P> at all times?

These are most easily calculated using the raising and lowering operators
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