Solutions to Chapter 5

5.1 [10] The Lennard-Jones $\mathbf{6}-12$ potential is commonly used as a model to describe the potential of an atom in the neighborhood of another atom. Classically, the energy is given by $E=\frac{1}{2} m \dot{x}^{2}+4 \varepsilon\left[(\sigma / x)^{12}-(\sigma / x)^{6}\right]$.
(a) [6] Find the minimum $x_{\min }$ of this potential, and expand the potential to quadratic order in $\left(x-x_{\min }\right)$.

The potential is minimized when the derivative vanishes, so we have

$$
0=\frac{d V}{d x}=4 \varepsilon \frac{d}{d x}\left[\left(\frac{\sigma}{x}\right)^{12}-\left(\frac{\sigma}{x}\right)^{6}\right]=4 \varepsilon\left[-\frac{12 \sigma^{12}}{x^{13}}+\frac{6 \sigma^{6}}{x^{7}}\right]=\frac{24 \varepsilon \sigma^{6}}{x^{7}}\left(1-\frac{2 \sigma^{6}}{x^{6}}\right)
$$

The minimum of this potential is therefore $x_{\min }=2^{1 / 6} \sigma$. If we expand this potential out to order $\left(x-x_{\min }\right)^{2}$, we have

$$
\begin{aligned}
V(x) & \approx V\left(x_{\min }\right)+V^{\prime}\left(x_{\min }\right)\left(x-x_{\min }\right)+\frac{1}{2} V^{\prime \prime}\left(x_{\min }\right)\left(x-x_{\min }\right)^{2} \\
& =4 \varepsilon\left[\left(\frac{\sigma}{\sigma 2^{1 / 6}}\right)^{12}-\left(\frac{\sigma}{\sigma 2^{1 / 6}}\right)^{6}\right]+0+\frac{1}{2} \cdot 4 \varepsilon\left[\frac{156 \sigma^{12}}{\left(\sigma 2^{1 / 6}\right)^{14}}-\frac{42 \sigma^{6}}{\left(\sigma 2^{1 / 6}\right)^{8}}\right]\left(x-x_{\min }\right)^{2} \\
& =4 \varepsilon\left(\frac{1}{4}-\frac{1}{2}\right)+\frac{4 \varepsilon}{2 \sigma^{2}}\left(156 \cdot 2^{-7 / 3}-42 \cdot 2^{-4 / 3}\right)\left(x-x_{\min }\right)^{2}=-\varepsilon+\frac{2 \varepsilon}{\sigma^{2} 2^{1 / 3}}(39-21)\left(x-x_{\min }\right)^{2} \\
& =-\varepsilon+9 \cdot 2^{5 / 3} \frac{\varepsilon}{\sigma^{2}}\left(x-x_{\min }\right)^{2} .
\end{aligned}
$$

(b) [4] Determine the classical frequency ω, and calculate the quantum mechanical minimum energy, as a function of the various parameters.

The Harmonic oscillator is normally written as $E=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}$. Comparing this with our energy expression, we see that the role of the spring constant is played by the combination

$$
k=9 \cdot 2^{8 / 3} \frac{\varepsilon}{\sigma^{2}}
$$

The angular frequency is given by $\omega=\sqrt{k / m}$, so we have

$$
\omega=\sqrt{\frac{9 \cdot 2^{8 / 3} \varepsilon}{m \sigma^{2}}}=\frac{3 \cdot 2^{4 / 3}}{\sigma} \sqrt{\frac{\varepsilon}{m}} .
$$

The ground state energy is normally $E_{0}=\frac{1}{2} \hbar \omega$, but the energy has been shifted downwards by an amount $-\varepsilon$, so we have

$$
E_{0}=-\varepsilon+\frac{1}{2} \hbar \omega=-\varepsilon+3 \cdot 2^{1 / 3} \frac{\hbar}{\sigma} \sqrt{\frac{\varepsilon}{m}} .
$$

$5.2[10]$ At $\boldsymbol{t}=\mathbf{0}$, a single particle is placed in a harmonic oscillator $H=P^{2} / 2 m+\frac{1}{2} m \omega^{2} X^{2}$ in the superposition state $|\Psi(t=0)\rangle=\frac{3}{5}|1\rangle+\frac{4}{5}|2\rangle$, that is, in a superposition of the first and second excited states.
(a) [3] What is the wave function $|\Psi(t)\rangle$ at subsequent times?

The wave function has been written in terms of eigenstates of the Hamiltonian, so this makes it relatively easy. The energy of the state $|n\rangle$ is $\hbar \omega\left(n+\frac{1}{2}\right)$, and therefore the state will evolve as

$$
|\Psi(t)\rangle=\frac{3}{5}|1\rangle e^{-i 3 \hbar \omega t / 2 \hbar}+\frac{4}{5}|2\rangle e^{-i 5 \hbar \omega t / 2 \hbar}=\frac{3}{5}|1\rangle e^{-i 3 \omega t / 2}+\frac{4}{5}|2\rangle e^{-i 5 \omega t / 2} .
$$

(b) [7] What are the expectation values $\langle X\rangle$ and $\langle P\rangle$ at all times?

These are most easily calculated using the raising and lowering operators

$$
\begin{aligned}
\langle X\rangle & =\sqrt{\frac{\hbar}{2 m \omega}}\langle\Psi|\left(a+a^{\dagger}\right)|\Psi\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\frac{3}{5}\langle 1| e^{i 3 \omega t / 2}+\frac{4}{5}\langle 2| e^{i 5 \omega t / 2}\right)\left(a+a^{\dagger}\right)\left(\frac{3}{5}|1\rangle e^{-i 3 \omega t / 2}+\frac{4}{5}|2\rangle e^{-i 5 \omega t / 2}\right) \\
& =\sqrt{\hbar /(2 m \omega)}\left(\frac{3}{5}\langle 1| e^{i 3 \omega t / 2}+\frac{4}{5}\langle 2| e^{i 5 \omega t / 2}\right)\left[\frac{3}{5}(|0\rangle+\sqrt{2}|2\rangle)+\frac{4}{5}(\sqrt{2}|1\rangle+\sqrt{3}|3\rangle) e^{-i 5 \omega t / 2}\right] \\
& =\sqrt{\hbar /(2 m \omega)} \frac{3}{5} \cdot \frac{4}{5} \sqrt{2}\left(e^{-i \omega t}+e^{i \omega t}\right)=\frac{24}{25} \sqrt{\hbar /(m \omega)} \cos (\omega t)
\end{aligned}
$$

and

$$
\begin{aligned}
\langle P\rangle & =i \sqrt{\frac{1}{2} \hbar m \omega}\langle\Psi|\left(a^{\dagger}-a\right)|\Psi\rangle \\
& =i \sqrt{\frac{1}{2} \hbar m \omega}\left(\frac{3}{5}\langle 1| e^{i 3 \omega t / 2}+\frac{4}{5}\langle 2| e^{i 5 \omega t / 2}\right)\left(a^{\dagger}-a\right)\left(\frac{3}{5}|1\rangle e^{-i 3 \omega t / 2}+\frac{4}{5}|2\rangle e^{-i 5 \omega t / 2}\right) \\
& =i \sqrt{\frac{1}{2} \hbar m \omega}\left(\frac{3}{5}\langle 1| e^{i 3 \omega t / 2}+\frac{4}{5}\langle 2| e^{i 5 \omega t / 2}\right)\left[\frac{3}{5}(\sqrt{2}|2\rangle-|0\rangle) e^{-i 3 \omega t / 2}+\frac{4}{5}(\sqrt{3}|3\rangle-\sqrt{2}|1\rangle) e^{-i 5 \omega t / 2}\right] \\
& =i \sqrt{\frac{1}{2} \hbar m \omega} \frac{3}{5} \cdot \frac{4}{5} \sqrt{2}\left(e^{i \omega t}-e^{-i \omega t}\right)=-\frac{24}{25} \sqrt{\hbar m \omega} \sin (\omega t) .
\end{aligned}
$$

