Solutions to Chapter 5

5.3 [10] A particle of mass m is in a one-dimensional harmonic oscillator with angular frequency ω. If the particle is in the coherent state $|z\rangle$, find the uncertainties $\Delta X, \Delta P$, and check that they satisfy the uncertainty relation $\Delta X \Delta P \geq \frac{1}{2} \hbar$.

Our strategy will be to rewrite all operators in terms of the raising and lowering operators. Then, whenever we see a on the right, we'll rewrite it using $a|z\rangle=z|z\rangle$; whenever we see a^{\dagger} on the left, we'll rewrite it using $\langle z| a^{\dagger}=\langle z| z^{*}$, and whenever we encounter $a a^{\dagger}$ we'll rewrite it as $a a^{\dagger}=a^{\dagger} a+1$.

$$
\begin{aligned}
(\Delta X)^{2} & =\left\langle X^{2}\right\rangle-\langle X\rangle^{2}=\left(\sqrt{\frac{\hbar}{2 m \omega}}\right)^{2}\langle z|\left(a+a^{\dagger}\right)^{2}|z\rangle-\left(\sqrt{\frac{\hbar}{2 m \omega}}\right)^{2}\langle z|\left(a+a^{\dagger}\right)|z\rangle^{2} \\
& =\frac{\hbar}{2 m \omega}\left\{\langle z|\left(a^{2}+a a^{\dagger}+a^{\dagger} a+a^{\dagger 2}\right)|z\rangle-\left[\langle z|\left(z+z^{*}\right)|z\rangle\right]^{2}\right\} \\
& =\frac{\hbar}{2 m \omega}\left\{\langle z|\left(a^{2}+2 a^{\dagger} a+1+a^{\dagger 2}\right)|z\rangle-\left(z+z^{*}\right)^{2}\right\} \\
& =\frac{\hbar}{2 m \omega}\left\{\langle z|\left(z^{2}+2 z^{*} z+1+z^{* 2}\right)|z\rangle-\left(z+z^{*}\right)^{2}\right\} \\
& =\frac{\hbar}{2 m \omega}\left(z^{2}+2 z^{*} z+1+z^{* 2}-z^{2}-2 z^{*} z-z^{* 2}\right)=\frac{\hbar}{2 m \omega}, \\
(\Delta P)^{2} & =\left\langle P^{2}\right\rangle-\langle P\rangle^{2}=(i \sqrt{\hbar m \omega / 2})^{2}\langle z|\left(a^{\dagger}-a\right)^{2}|z\rangle-(i \sqrt{\hbar m \omega / 2})^{2}\langle z|\left(a^{\dagger}-a\right)|z\rangle^{2} \\
& =-\frac{1}{2} \hbar m \omega\left\{\langle z|\left(a^{\dagger 2}-a a^{\dagger}-a^{\dagger} a+a^{2}\right)|z\rangle-\left[\langle z|\left(z^{*}-z\right)|z\rangle\right]^{2}\right\} \\
& =-\frac{1}{2} \hbar m \omega\left\{\langle z|\left(a^{\dagger 2}-2 a^{\dagger} a-1+a^{2}\right)|z\rangle-\left(z^{*}-z\right)^{2}\right\} \\
& =-\frac{1}{2} \hbar m \omega\left\{\langle z|\left(z^{* 2}-2 z^{*} z-1+z^{2}\right)|z\rangle-\left(z^{*}-z\right)^{2}\right\} \\
& =-\frac{1}{2} \hbar m \omega\left(z^{* 2}-2 z^{*} z-1+z^{2}-z^{* 2}+2 z z^{*}-z^{2}\right)=\frac{1}{2} \hbar m \omega .
\end{aligned}
$$

To summarize, taking the square root we have

$$
\Delta X=\sqrt{\frac{\hbar}{2 m \omega}}, \quad \Delta P=\sqrt{\frac{1}{2} \hbar m \omega}, \quad(\Delta X)(\Delta P)=\frac{1}{2} \hbar
$$

The state satisfies the inequality by saturating it; that is, making it an equality. These states are commonly called minimum uncertainty states for this reason.
5.4 [15] In class we assumed that the coupled harmonic oscillators all had the same mass. Consider now the case where the oscillators have different masses, so that $H=\sum_{i} P_{i}^{2} / 2 m_{i}+\frac{1}{2} \sum_{i} \sum_{j} k_{i j} X_{i} X_{j}$.
(a) [5] Rescale the variables P_{i} and X_{i} to new variables \hat{P}_{i} and \hat{X}_{i} with the usual commutation relations: $\left[\hat{X}_{i}, \hat{P}_{j}\right]=i \hbar \delta_{i j}$ such that in terms of the new variables, the Hamiltonian is given by $H=\sum_{i} \hat{P}_{i}^{2} / 2 m+\frac{1}{2} \sum_{i} \sum_{j} k_{i j}^{\prime} \hat{X}_{i} \hat{X}_{j}$, where \boldsymbol{m} is an arbitrary mass that you can choose.

We want to rescale the momentum operators so that they all have the same coefficient in the kinetic energy term. If we define $P_{i}=c \hat{P}_{i}$ for some constant c, then the term that looked like $P_{i}^{2} / 2 m_{i}$ will become $c^{2} \hat{P}_{i}^{2} / 2 m_{i}$, which we want to equal $\hat{P}_{i}^{2} / 2 m$, so $c^{2} / 2 m_{i}=1 / 2 m$, and we have $c=\sqrt{m_{i} / m}$, so that $\hat{P}_{i}=P_{i} / c=P_{i} \sqrt{m / m_{i}}$. To make sure the commutation relations are not messed up, we take the opposite factor for the X 's, so we have

$$
\hat{P}_{i}=P_{i} \sqrt{m / m_{i}} \quad \text { and } \quad \hat{X}_{i}=X_{i} \sqrt{m_{i} / m}
$$

Then these new variables will have commutation relations

$$
\left[\hat{X}_{i}, \hat{P}_{j}\right]=\sqrt{m_{i} / m} \sqrt{m / m_{j}}\left[X_{i}, P_{j}\right]=i \hbar \delta_{i j} \sqrt{m_{i} / m_{j}}=i \hbar \delta_{i j}
$$

where, at the final step, we have taken advantage of the fact that the expression is zero for $i \neq j$.
Solving for our old variables in terms of the new, we now work out the Hamiltonian in the new variables.

$$
\begin{aligned}
H & =\sum_{i} \frac{1}{2 m_{i}} P_{i}^{2}+\frac{1}{2} \sum_{i} \sum_{j} k_{i j} X_{i} X_{j}=\sum_{i} \frac{1}{2 m_{i}} \hat{P}_{i}^{2}\left(\sqrt{m_{i} / m}\right)^{2}+\frac{1}{2} \sum_{i} \sum_{j} k_{i j} \hat{X}_{i} \hat{X}_{j} \sqrt{m / m_{i}} \sqrt{m / m_{j}} \\
& =\frac{1}{2 m} \sum_{i} \hat{P}_{i}^{2}+\frac{1}{2} \sum_{i} \sum_{j}\left(k_{i j} m / \sqrt{m_{i} m_{j}}\right) \hat{X}_{i} \hat{X}_{j} .
\end{aligned}
$$

(b) [5] Find an expression for $k_{i j}^{\prime}$ in terms of the original variables $\boldsymbol{k}_{i j}$ and \boldsymbol{m}_{i}, and explain in words how to obtain the eigenvalues of the original Hamiltonian.

Comparing the form we have for the Hamiltonian with the form requested, we see that $k_{i j}^{\prime}=k_{i j} m / \sqrt{m_{i} m_{j}}$. The Hamiltonian is now in the same form as found in class. We now treat the constants $k_{i j}^{\prime}$ as a matrix k^{\prime}. If we find the eigenvalues of k^{\prime}, which we will call k_{i}^{\prime}, then the normal modes of the harmonic oscillator will have frequencies $\omega_{i}=\sqrt{k_{i}^{\prime} / m}$, and then the energy eigenstates will have energy $E_{n_{1} \cdots n_{N}}=\sum_{i} \hbar \omega_{i}\left(n_{i}+\frac{1}{2}\right)$.

(c) [5] A system of two particles in one dimension has Hamiltonian

$H=\frac{P_{1}^{2}}{2 m}+\frac{P_{2}^{2}}{2(m / 4)}+\frac{1}{2} m \omega^{2}\left(5 X_{1}^{2}+2 X_{2}^{2}+2 X_{1} X_{2}\right)$. Find the eigenvalues $\boldsymbol{E}_{i j}$ of this

Hamiltonian.

We will simply use all the formulas we have already derived. The initial coupling has spring constants given by

$$
k_{11}=5 m \omega^{2}, \quad k_{12}=k_{21}=m \omega^{2}, \quad k_{22}=2 m \omega^{2}
$$

Note that we have split the cross-term in half. Now, the masses are $m_{1}=m$ and $m_{2}=m / 4$. It is therefore straightforward to get the components of the k^{\prime} matrix:

$$
k_{11}^{\prime}=\frac{m k_{11}}{\sqrt{m m}}=5 m \omega^{2}, \quad k_{12}^{\prime}=k_{21}^{\prime}=\frac{m k_{12}}{\sqrt{m m / 4}}=2 m \omega^{2}, \quad \text { and } \quad k_{22}^{\prime}=\frac{m k_{22}}{\sqrt{(m / 4)^{2}}}=8 m \omega^{2} .
$$

We put this together into a single matrix

$$
k^{\prime}=m \omega^{2}\left(\begin{array}{ll}
5 & 2 \\
2 & 8
\end{array}\right) .
$$

We need to find the eigenvalues of this matrix. Pulling out the common factors, we need to find the solutions of

$$
0=\operatorname{det}\left(\begin{array}{cc}
5-\lambda & 2 \\
2 & 8-\lambda
\end{array}\right)=\lambda^{2}-13 \lambda+40-4=(\lambda-9)(\lambda-4) .
$$

Reintroducing the common factor, the eigenvalues of k^{\prime} are $4 m \omega^{2}$ and $9 m \omega^{2}$.
We then find the frequencies $\omega_{i}=\sqrt{k_{i}^{\prime} / m}$, which yields 2ω and 3ω. Thus the energy eigenvalues are

$$
E_{i j}=\hbar(2 \omega)\left(i+\frac{1}{2}\right)+\hbar(3 \omega)\left(j+\frac{1}{2}\right)=\hbar \omega\left(2 i+3 j+\frac{5}{2}\right) .
$$

