Physics 741 - Graduate Quantum Mechanics 1

Solutions to Chapter 6

6.1 [10] For the finite square well in section C, we showed that (6.24) is satisfied for the even wave functions. Repeat this derivation for the odd wave functions; i.e., derive (6.25).

We know from class notes that in the three regions, the solution takes the form

$$
\begin{aligned}
\psi_{I}(x) & =A e^{\beta x} \\
\psi_{I I}(x) & =B \cos (k x)+C \sin (k x) \\
\psi_{I I I}(x) & =D e^{-\beta x}
\end{aligned}
$$

We are interested in the odd parity bound states. Since parity relates regions I and III to each other, and region II to itself, this implies $-\psi_{I}(x)=\psi_{I I I}(-x)$ and $\psi_{I I}(-x)=-\psi_{I I}(x)$. We therefore have $A=-D$ and $B=0$.

We now wish to match boundary conditions. We will choose to do so at $x=a$, where we follow the notes to yield

$$
\begin{aligned}
& \psi_{\text {II }}(a)=\psi_{\text {III }}(a) \quad \Rightarrow \quad C \sin (k a)=D \exp (-\beta a) \\
& \psi_{\text {III }}^{\prime}(a)=\psi_{\text {III }}^{\prime}(a) \Rightarrow \quad k C \cos (k a)=-\beta D \exp (-\beta a)
\end{aligned}
$$

Dividing the second equation by the first, we find

$$
k \cot (k a)=-\beta
$$

Using equations (6.22) and (6.23), it is easy to see that

$$
k^{2}+\beta^{2}=2 m V_{0} \hbar^{-2} \Rightarrow \beta=\sqrt{2 m V_{0} \hbar^{-2}-k^{2}}
$$

Plugging this in and dividing by $-k$, we find

$$
-\cot (k a)=\sqrt{\frac{2 m V_{0}}{\hbar^{2} k^{2}}-1}
$$

This is equation (6.25). Solutions of this equation can then be substituted into (6.23) to get the energy eigenvalues.

