Physics 741 - Graduate Quantum Mechanics 1

Solutions to Chapter 6

6.2 [15] A particle of mass \boldsymbol{m} in two dimensions is governed by the Hamiltonian

$$
H=\frac{1}{2 m}\left(P_{x}^{2}+P_{y}^{2}\right)+\frac{1}{4} \alpha\left(X^{2}+Y^{2}\right)^{2}+\frac{1}{3} \gamma\left(X^{3}-3 X Y^{2}\right)
$$

(a) [5] Show that the Hamiltonian is invariant under the transformation $R\left(\mathcal{R}\left(\frac{2}{3} \pi\right)\right)$.

Under a rotation by $\frac{2}{3} \pi$, the coordinates transform as

$$
\binom{X^{\prime}}{Y^{\prime}}=\left(\begin{array}{cc}
\cos \frac{2 \pi}{3} & -\sin \frac{2 \pi}{3} \\
\sin \frac{2 \pi}{3} & \cos \frac{2 \pi}{3}
\end{array}\right)\binom{X}{Y}=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)\binom{X}{Y}=\binom{-\frac{1}{2} X-\frac{\sqrt{3}}{2} Y}{\frac{\sqrt{3}}{2} X-\frac{1}{2} Y}
$$

We simply substitute this into our potential and check if it remains unchanged. We find

$$
X^{\prime 2}+Y^{\prime 2}=\left(\frac{1}{2} X-\frac{\sqrt{3}}{2} Y\right)^{2}+\left(\frac{\sqrt{3}}{2} X+\frac{1}{2} Y\right)^{2}=\left(\frac{1}{4} X^{2}-\frac{\sqrt{3}}{2} X Y+\frac{3}{4} Y^{2}\right)+\left(\frac{3}{4} X^{2}+\frac{\sqrt{3}}{2} X Y+\frac{1}{4} Y^{2}\right)=X^{2}+Y^{2}
$$

So this term is unchanged. The other term is more complicated, but with a little work, we see that

$$
\begin{aligned}
X^{\prime 3}-3 X^{\prime} Y^{\prime 2} & =\left(-\frac{1}{2} X-\frac{\sqrt{3}}{2} Y\right)^{3}-3\left(-\frac{1}{2} X-\frac{\sqrt{3}}{2} Y\right)\left(\frac{\sqrt{3}}{2} X-\frac{1}{2} Y\right)^{2} \\
& =\left(-\frac{1}{8} X^{3}-\frac{3 \sqrt{3}}{8} X^{2} Y-\frac{9}{8} X Y^{2}-\frac{3 \sqrt{3}}{8} Y^{3}\right)+\left(\frac{3}{2} X+\frac{3 \sqrt{3}}{2} Y\right)\left(\frac{3}{4} X^{2}-\frac{\sqrt{3}}{2} X Y+\frac{1}{4} Y^{2}\right) \\
& =-\frac{1}{8} X^{3}-\frac{3 \sqrt{3}}{8} X^{2} Y-\frac{9}{8} X Y^{2}-\frac{3 \sqrt{3}}{8} Y^{3}+\frac{9}{8} X^{3}+\frac{3 \sqrt{3}}{8} X^{2} Y-\frac{15}{8} X Y^{2}+\frac{3 \sqrt{3}}{8} Y^{3}=X^{3}-3 X Y^{2} .
\end{aligned}
$$

Once again, this expression is unchanged, so we have proven our claim that this is unchanged under such a transformation. Hence this potential is invariant under rotations by 120°.
(b) [4] Classify the states according to their eigenvalues under $R\left(\mathcal{R}\left(\frac{2}{3} \pi\right)\right)$. What eigenvalues are possible?

Because the operator $R\left(\mathcal{R}\left(\frac{2}{3} \pi\right)\right)$ commutes with the Hamiltonian, our eigenstates of the Hamiltonian can be chosen to also be eigenstates of $R\left(\mathcal{R}\left(\frac{2}{3} \pi\right)\right)$. If we define $R\left(\mathcal{R}\left(\frac{2}{3} \pi\right)\right)|\psi\rangle=\lambda|\psi\rangle$, then as always since we have a unitary operator, λ must be a complex number of magnitude one. However, it is further restricted since three successive rotations are identical with no rotation, so we have

$$
\lambda^{3}|\psi\rangle=\left[R\left(\mathcal{R}\left(\frac{2}{3} \pi\right)\right)\right]^{3}|\psi\rangle=R(\mathcal{R}(2 \pi))|\psi\rangle=R(1)|\psi\rangle=|\psi\rangle .
$$

So we have $\lambda^{3}=1$. We can find the three roots in a variety of ways, the easiest being to factor it and use the quadratic equation:

$$
\lambda^{3}=1 \Rightarrow 0=\lambda^{3}-1=(\lambda-1)\left(\lambda^{2}+\lambda+1\right) \Rightarrow \lambda=1 \text { or } \lambda=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} .
$$

(c) [3] Suppose that $\psi(x, y)$ is an eigenstate of \boldsymbol{H} and $R\left(\mathcal{R}\left(120^{\circ}\right)\right)$ with eigenvalues \boldsymbol{E} and λ respectively. Show that $\psi^{*}(x, y)$ is also an eigenstate of \boldsymbol{H} and $R\left(\mathcal{R}\left(120^{\circ}\right)\right)$, and determine its eigenvalues. (E is, of course, real).

Working in the coordinate representation, Schrödinger's equation and our symmetry relationship are

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\mathbf{r})+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r}) \\
\psi\left(\mathcal{R}\left(\frac{2}{3} \pi\right) \mathbf{r}\right)=\lambda \psi(\mathbf{r})
\end{array}
$$

Taking the complex conjugate of these relations, we see that

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}(\mathbf{r})+V(\mathbf{r}) \psi^{*}(\mathbf{r}) & =E \psi^{*}(\mathbf{r}) \\
\psi^{*}\left(\mathcal{R}\left(\frac{2}{3} \pi\right) \mathbf{r}\right) & =\lambda^{*} \psi^{*}(\mathbf{r})
\end{aligned}
$$

In other words, the complex conjugate is also an eigenstate of H and R with eigenvalues E and λ^{*} respectively.
(d) [3] Careful measurements of the Hamiltonian discovers that the system has some non-degenerate eigenstates (like the ground state), and some states that are two-fold degenerate (two eigenstates with exactly the same eigenvalue). Explain why these degeneracies are occurring.

Any state that has a complex value of λ must come with another state that has eigenvalue λ^{*}. This will result in two-fold degeneracies. The non-degenerate states correspond to when $\lambda=$ 1.

