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Solutions to Chapter 6 

 
6.2 [15] A particle of mass m in two dimensions is governed by the Hamiltonian 

 ( ) ( ) ( )22 2 2 2 3 21 1
4 3

1 3
2 x yH P P X Y X XY

m
α γ= + + + + −  

(a) [5] Show that the Hamiltonian is invariant under the transformation ( )( )2
3R π . 
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We simply substitute this into our potential and check if it remains unchanged.  We find 
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So this term is unchanged.  The other term is more complicated, but with a little work, we see 
that 
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Once again, this expression is unchanged, so we have proven our claim that this is unchanged 
under such a transformation. Hence this potential is invariant under rotations by 120°. 

 
(b) [4] Classify the states according to their eigenvalues under ( )( )2

3R π .  What 
eigenvalues are possible? 

 
 Because the operator ( )( )2

3R π  commutes with the Hamiltonian, our eigenstates of the 

Hamiltonian can be chosen to also be eigenstates of ( )( )2
3R π .  If we define 

( )( )2
3R  π ψ λ ψ= , then as always since we have a unitary operator, λ  must be a complex 

number of magnitude one.  However, it is further restricted since three successive rotations are 
identical with no rotation, so we have 
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 So we have 3 1λ = .  We can find the three roots in a variety of ways, the easiest being to factor it 
and use the quadratic equation: 
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(c) [3] Suppose that ( ),x yψ  is an eigenstate of H and ( )( )120R °  with eigenvalues E 

and λ respectively.  Show that ( )* ,x yψ  is also an eigenstate of H and ( )( )120R ° , 
and determine its eigenvalues.  (E is, of course, real). 

 
 Working in the coordinate representation, Schrödinger’s equation and our symmetry 
relationship are 
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Taking the complex conjugate of these relations, we see that 
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In other words, the complex conjugate is also an eigenstate of H and R with eigenvalues E and 
λ* respectively. 
 

(d) [3] Careful measurements of the Hamiltonian discovers that the system has some 
non-degenerate eigenstates (like the ground state), and some states that are two-fold 
degenerate (two eigenstates with exactly the same eigenvalue).  Explain why these 
degeneracies are occurring. 

 
 Any state that has a complex value of λ must come with another state that has eigenvalue 
λ*.  This will result in two-fold degeneracies.  The non-degenerate states correspond to when λ = 
1. 

 
 
 


