Physics 741 - Graduate Quantum Mechanics 1

Solutions to Chapter 6

6.4 [15] A particle of mass \boldsymbol{M} in three dimensions has potential $V(X, Y, Z)=\frac{1}{4} A\left(X^{2}+Y^{2}\right)^{2}$.
(a) [6] Show that this Hamiltonian has two continuous symmetries, and that they commute. Call the corresponding eigenvalues m and k. Are there any restrictions on k and m ?

First, it is obvious that the potential is independent of Z, and therefore there is a continuous translation symmetry in this direction. Secondly, it is easy to see that rotation about the z-axis leaves the Hamiltonian unchanged. Specifically, define a set of rotated operators

$$
\begin{aligned}
& X^{\prime}=X \cos \theta-Y \sin \theta \\
& Y^{\prime}=X \sin \theta+Y \cos \theta
\end{aligned}
$$

Then if we treat the potential as $V(x, y)=\frac{1}{4} A\left(x^{2}+y^{2}\right)^{2}$, then we have

$$
\begin{aligned}
V\left(X^{\prime}, Y^{\prime}\right) & =\frac{1}{4} A\left[(X \cos \theta-Y \sin \theta)^{2}+(X \sin \theta+Y \cos \theta)^{2}\right]^{2} \\
& =\frac{1}{4} A\left[\begin{array}{l}
X^{2} \cos ^{2} \theta-2 X Y \cos \theta \sin \theta+Y^{2} \sin ^{2} \theta \\
+X^{2} \sin ^{2} \theta+2 X Y \sin \theta \cos \theta+Y^{2} \cos ^{2} \theta
\end{array}\right]=\frac{1}{4} A\left(X^{2}+Y^{2}\right)^{2}=V(X, Y) .
\end{aligned}
$$

Because we have translation symmetry in the z-direction and rotation about the z-axis, our Hamiltonian will commute with the generators of these groups, P_{z} and L_{z}. Our energy eigenstates can also be chosen to be eigenstates of these operators, and we will have

$$
P_{z}|\phi\rangle=\hbar k|\phi\rangle \quad \text { and } \quad L_{z}|\phi\rangle=\hbar m|\phi\rangle .
$$

As argued in class, the eigenvalue m is forced to be an integer, though k is unrestricted.
(b) [9] What would be an appropriate set of coordinates for writing the eigenstates of this Hamiltonian? Write the eigenstates as a product of three functions (which I call Z, R, and Φ), and give me the explicit form of two of these functions.

Clearly, z is a good coordinate to use, since our eigenstates of the Hamiltonian are eigenstates of P_{z}. However, since they are also eigenstates of L_{z}, it seems like a good idea to change coordinates to cylindrical coordinates (ρ, ϕ, z), which are related to Cartesian coordinates by

$$
\left\{\begin{array}{c}
x=\rho \cos \phi \\
y=\rho \sin \phi \\
z=z
\end{array}\right\} \quad \text { OR } \quad\left\{\begin{array}{c}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}(y / x) \\
z=z
\end{array}\right\}
$$

If we write our wave function in terms of these coordinates, and assume it factors, we have

$$
\psi(\rho, \phi, z)=R(\rho) \Phi(\phi) Z(z)
$$

If we demand that this be an eigenstate of P_{z} with eigenvalue $\hbar k$, then we find

$$
\hbar k Z(z)=P_{z} Z(z)=\frac{\hbar}{i} \frac{\partial}{\partial z} Z(z) \text { so that } Z(z)=e^{i k z}
$$

Similarly, if we demand that $\psi(\rho, \phi, z)$ be an eigenstate of L_{z} with eigenvalue $\hbar m$, then we find

$$
\hbar m \Phi(\phi)=L_{z} \Phi(\phi)=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \Phi(\phi) \quad \text { so that } \quad \Phi(\phi)=e^{i m \phi} .
$$

There is a certain arbitrariness in normalization, and the choices we have made have perhaps not been the best, but up to a constant, we therefore find

$$
\psi(\rho, \phi, z)=R(\rho) e^{i k z+i m \phi} .
$$

If we wished, we could now easily write an explicit equation for the radial function R. Writing the Laplacian that is implicit in the kinetic term in the Hamiltonian in cylindrical coordinates, we find

$$
H \psi=-\frac{\hbar^{2}}{2 M}\left(\frac{\partial^{2} \psi}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \psi}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)+\frac{1}{4} A\left(\rho^{2}\right)^{2} \psi .
$$

Plugging in our explicit form for the wave function, and using Schrödinger's equation $H \psi=E \psi$, we have

$$
E R=-\frac{\hbar^{2}}{2 M}\left(\frac{d^{2} R}{d \rho^{2}}+\frac{1}{\rho} \frac{d R}{d \rho}\right)+\left(\frac{\hbar^{2} k^{2}}{2 M}+\frac{\hbar^{2} m^{2}}{2 M \rho^{2}}+\frac{1}{4} A \rho^{4}\right) R .
$$

