Solutions to Chapter 8

1. [10] In section \mathbf{A}, we were searching for matrices $D(\mathcal{R})$ which satisfy $D\left(\mathcal{R}_{1}\right) D\left(\mathcal{R}_{2}\right)=D\left(\mathcal{R}_{1} \mathcal{R}_{2}\right)$. One easy way to make this equation work out is to define $D(\mathcal{R})=\mathcal{R}$. Our goal in this problem is to identify the spin.
(a) [4] Using the equations (6.12) and the definition of the spin matrices $D(\mathcal{R}(\hat{\mathbf{r}}, \theta))=1-i \theta \hat{\mathbf{r}} \cdot \mathbf{S} / \hbar+\mathcal{O}\left(\theta^{2}\right)$, work out the three spin matrices S .

Equations (6.12) give the rotation matrices around each of the three axes for arbitrary angle θ. If we write these to order θ, we see that they give

$$
\begin{aligned}
& \mathcal{R}(\hat{\mathbf{x}}, \theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \approx\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -\theta \\
0 & \theta & 1
\end{array}\right)=\mathbf{1}+\theta\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \\
& \mathcal{R}(\hat{\mathbf{y}}, \theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \approx\left(\begin{array}{ccc}
1 & 0 & \theta \\
0 & 1 & 0 \\
-\theta & 0 & 1
\end{array}\right)=\mathbf{1}+\theta\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \\
& \mathcal{R}(\hat{\mathbf{z}}, \theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \approx\left(\begin{array}{ccc}
1 & -\theta & 0 \\
\theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{1}+\theta\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

To linear order, this must be the same as $\mathcal{R}(\hat{\mathbf{r}}, \theta)=1-i \theta \hat{\mathbf{r}} \cdot \mathbf{S} / \hbar$, or solving for $\hat{\mathbf{r}} \cdot \mathbf{S}$,

$$
S_{x}=\hbar\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad S_{y}=\hbar\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), \quad S_{z}=\hbar\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

(b) [3] Find the eigenvalues of S_{z}. This should be enough for you to conjecture what value of s this representation corresponds to.

The easiest way to find these is to use the characteristic equation, which is

$$
0=\operatorname{det}\left(S_{z}-\lambda \mathbf{1}\right)=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & -i \hbar & 0 \\
i \hbar & -\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right)=-\lambda^{3}+\hbar^{2} \lambda=-\lambda(\lambda-\hbar)(\lambda+\hbar)
$$

The three solutions of this are $\lambda=0, \hbar,-\hbar$, which are the three values we would expect for spin 1. So we suspect $s=1$. We don't recognize it in this form, because we have not written it in the basis where S_{z} is diagonalized.
(c) [3] Check explicitly that S^{2} is a constant matrix with the appropriate value.

$$
\mathbf{S}^{2}=\hbar^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right)^{2}+\hbar^{2}\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right)^{2}+\hbar^{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)^{2}=\hbar^{2}\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

The result is supposed to be $\mathbf{S}^{2}=\left(s^{2}+s\right) \hbar^{2}=2 \hbar^{2}$, so it worked out.

