Solutions to Chapter 8

2. [10] Suppose that L and S are two sets of angular momentum-like operators that commute with each other, so that $\left[L_{i}, S_{j}\right]=0$. In this problem, you may assume from the commutation relations that it follows that $\left[\mathbf{L}^{2}, \mathbf{L}\right]=0=\left[\mathbf{S}^{2}, \mathbf{S}\right]$.
(a) [2] Define $\mathbf{J}=\mathbf{L}+\mathbf{S}$. Show that \mathbf{J} is also an angular momentum-like operator. It follows automatically that $\left[\mathbf{J}^{2}, \mathbf{J}\right]=0$.

We simply have to work out the commutator of each component of \mathbf{J} with each other. We'll take advantage of the Levi-Civita tensor to show that

$$
\left[J_{i}, J_{j}\right]=\left[L_{i}+S_{i}, L_{j}+S_{j}\right]=\left[L_{i}, L_{j}\right]+\left[S_{i}, S_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} L_{k}+i \hbar \sum_{k} \varepsilon_{i j k} S_{k}=i \hbar \sum_{k} \varepsilon_{i j k} J_{k} .
$$

This saved us the work of doing it three times.
(b) [2] Show that $\left[\mathbf{L}^{2}, \mathbf{J}\right]=0=\left[\mathbf{S}^{2}, \mathbf{J}\right]$.

This is really pretty trivial.

$$
\left[\mathbf{L}^{2}, \mathbf{J}\right]=\left[\mathbf{L}^{2}, \mathbf{L}\right]+\left[\mathbf{L}^{2}, \mathbf{S}\right]=0+0=0, \quad\left[\mathbf{S}^{2}, \mathbf{J}\right]=\left[\mathbf{S}^{2}, \mathbf{L}\right]+\left[\mathbf{S}^{2}, \mathbf{S}\right]=0+0=0 .
$$

(c) [3] Convince yourself (and me) that the four operators J^{2}, L^{2}, S^{2}, and J_{z} all commute with each other (this is six commutators in all).

Since \mathbf{L}^{2} and \mathbf{S}^{2} commute with \mathbf{J}, it follows automatically that they commute with \mathbf{J}^{2} and J_{z} (that's four commutators so far). Since all the L's and S's commute with each other, it follows that \mathbf{L}^{2} and \mathbf{S}^{2} commute with each other. Finally, as mentioned in part (a), since $\left[\mathbf{J}^{2}, \mathbf{J}\right]=0, \mathbf{J}^{2}$ commutes with J_{z}.
(d) [3] Convince yourself that L_{z} and S_{z} do not commute with \mathbf{J}^{2}.

We simply try to do the commutation relations and see if it works.

$$
\begin{aligned}
{\left[\mathbf{J}^{2}, L_{z}\right] } & =\left[(\mathbf{L}+\mathbf{S})^{2}, L_{z}\right]=\left[\mathbf{L}^{2}+2 \mathbf{L} \cdot \mathbf{S}+\mathbf{S}^{2}, L_{z}\right]=\left[\mathbf{L}^{2}, L_{z}\right]+2\left[\mathbf{L} \cdot \mathbf{S}, L_{z}\right]+\left[\mathbf{S}^{2}, L_{z}\right] \\
& =2\left[L_{x}, L_{z}\right] S_{x}+2\left[L_{y}, L_{z}\right] S_{y}+2\left[L_{z}, L_{z}\right] S_{z}=-2 i \hbar L_{y} S_{x}+2 i \hbar L_{x} S_{y}, \\
{\left[\mathbf{J}^{2}, S_{z}\right] } & =\left[(\mathbf{L}+\mathbf{S})^{2}, S_{z}\right]=\left[\mathbf{L}^{2}+2 \mathbf{L} \cdot \mathbf{S}+\mathbf{S}^{2}, S_{z}\right]=\left[\mathbf{L}^{2}, S_{z}\right]+2\left[\mathbf{L} \cdot \mathbf{S}, S_{z}\right]+\left[\mathbf{S}^{2}, S_{z}\right] \\
& =2 L_{x}\left[S_{x}, S_{z}\right]+2 L_{y}\left[S_{y}, S_{z}\right]+2 L_{z}\left[S_{z}, S_{z}\right]=-2 i \hbar L_{x} S_{y}+2 i \hbar L_{y} S_{x} .
\end{aligned}
$$

Not surprisingly, the sum of these two expressions is zero, which follows from $\left[\mathbf{J}^{2}, \mathbf{J}\right]=0$.

