## Solutions to Chapter 8

7. [10] Let $V$ be any vector operator satisfying Eq. (8.22), and define $V_{q}$ for $q=-1,0,1$ as given by Eq. (8.23). Show that this results in a tensor of rank 1; that is, that Eqs. (8.25) are satisfied by $V_{q}$ with $\boldsymbol{k}=1$.

We'll simply work them all out

$$
\begin{aligned}
& {\left[J_{z}, V_{0}\right]=\left[J_{z}, V_{z}\right]=0,} \\
& {\left[J_{z}, V_{ \pm 1}\right]=\sqrt{\frac{1}{2}}\left[J_{z}, \mp V_{x}-i V_{y}\right]=i \hbar \sqrt{\frac{1}{2}}\left(\mp V_{y}+i U_{x}\right)= \pm \hbar \sqrt{\frac{1}{2}}\left(\mp V_{x}-i V_{y}\right)=\hbar V_{ \pm 1},} \\
& {\left[J_{ \pm}, V_{0}\right]=\left[J_{x} \pm i J_{y}, V_{z}\right]=i \hbar\left(-V_{y} \pm i U_{x}\right)=\hbar\left(\mp V_{x}-i V_{y}\right)=\hbar \sqrt{2} V_{ \pm 1},} \\
& {\left[J_{ \pm}, V_{ \pm 1}\right]=\sqrt{\frac{1}{2}}\left[J_{x} \pm i J_{y}, \mp V_{x}-i V_{y}\right]=\sqrt{\frac{1}{2}}\left\{-i\left[J_{x}, V_{y}\right]-i\left[J_{y}, V_{x}\right]\right\}=\hbar \sqrt{\frac{1}{2}}\left\{V_{z}-V_{z}\right\}=0,} \\
& {\left[J_{ \pm}, V_{\mp 1}\right]=\sqrt{\frac{1}{2}}\left[J_{x} \pm i J_{y}, \pm V_{x}-i V_{y}\right]=\sqrt{\frac{1}{2}}\left\{-i\left[J_{x}, V_{y}\right]+i\left[J_{y}, V_{x}\right]\right\}=\hbar \sqrt{\frac{1}{2}}\left\{V_{z}+V_{z}\right\}=\hbar \sqrt{2} V_{0} .}
\end{aligned}
$$

They all worked out as they should.
8. [20] Our goal in this problem is to find every non-vanishing matrix element for Hydrogen of the form $\langle 41 \mathrm{~m}| \mathbf{R}\left|42 m^{\prime}\right\rangle$; that is, all matrix elements between $4 d$ and $4 p$ states.
(a) [4] Find the matrix element $\langle 410| R_{0}|420\rangle$. It may be helpful to use the Maple routines that I have put online that allow you to calculate the radial integrals efficiently.

The matrix element in question is

$$
\begin{aligned}
\langle 410| R_{0}|420\rangle & =\langle 410| Z|420\rangle=\int d^{3} \mathbf{r} \psi_{410}^{*}(r, \theta, \phi)(r \cos \theta) \psi_{420}(r, \theta, \phi) \\
& =\left[\int_{0}^{\infty} r^{3} R_{41}(r) R_{42}(r) d r\right]\left[\int_{0}^{2 \pi} d \phi\right]\left[\int_{0}^{\pi} \sin \theta \cos \theta Y_{1}^{0}(\theta, \phi) Y_{2}^{0}(\theta, \phi) d \theta\right] .
\end{aligned}
$$

We now let Maple do the work for us:

```
> integrate(r^3*radial (4,1) *radial (4, 2) ,r=0..infinity);
> integrate(sin(theta)*cos(theta)*spherharm (2,0)*
    spherharm(1,0) ,theta=0..Pi);
```

$$
\langle 410| R_{0}|420\rangle=\left[-12 a_{0} \sqrt{3}\right][2 \pi][1 / \pi \sqrt{15}]=-24 a_{0} / \sqrt{5}
$$

## (b) [4] Find the reduced matrix element $\langle 41\|R\| 42\rangle$

By the Wigner-Eckart theorem, these matrix elements can be found from

$$
\langle 41 m| R_{q}\left|42 m^{\prime}\right\rangle=\langle 41\|\mathbf{R}\| 42\rangle\left\langle 1 m \mid 21 ; m^{\prime} q\right\rangle / \sqrt{2 \cdot 1+1}=\left\langle 21 ; m^{\prime} q \mid 1 m\right\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3} .
$$

Letting $m=m^{\prime}=q=0$, we then find

$$
\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=\langle 410| R_{0}|420\rangle /\langle 10 \mid 21 ; 00\rangle=\left(-24 a_{0} / \sqrt{5}\right) /(-\sqrt{2 / 5})=12 \sqrt{2} a_{0},
$$

so $\langle 41\|\mathbf{R}\| 42\rangle=12 \sqrt{6} a_{0}$. We found the Clebsch with the help of Maple:
$>$ clebsch (2,1,0,0,1,0);
(c) [8] Find all non-zero components of $\langle 41 m| R_{q}\left|42 m^{\prime}\right\rangle$. There should be nine non-zero ones (one of which you have from part (a)).

The non-zero ones are simply those with $m=q+m^{\prime}$. In each case, we can simply calculate the Clebsch-Gordan coefficients using my online routine.

$$
\begin{aligned}
\langle 411| R_{1}|420\rangle & =\langle 21 ; 01 \mid 11\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=\sqrt{1 / 10}\left(12 \sqrt{2} a_{0}\right)=12 a_{0} / \sqrt{5}, \\
\langle 411| R_{0}|421\rangle & =\langle 21 ; 10 \mid 11\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=-\sqrt{3 / 10}\left(12 \sqrt{2} a_{0}\right)=-12 a_{0} \sqrt{3 / 5}, \\
\langle 411| R_{-1}|422\rangle & =\langle 21 ; 2,-1 \mid 11\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=\sqrt{3 / 5}\left(12 \sqrt{2} a_{0}\right)=12 a_{0} \sqrt{6 / 5}, \\
\langle 410| R_{1}|42,-1\rangle & =\langle 21 ;-1,1 \mid 10\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=\sqrt{3 / 10}\left(12 \sqrt{2} a_{0}\right)=12 a_{0} \sqrt{3 / 5}, \\
\langle 410| R_{0}|420\rangle & =\langle 21 ; 00 \mid 10\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=-\sqrt{2 / 5}\left(12 \sqrt{2} a_{0}\right)=-24 a_{0} / \sqrt{5}, \\
\langle 410| R_{-1}|421\rangle & =\langle 21 ; 1,-1 \mid 10\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=\sqrt{3 / 10}\left(12 \sqrt{2} a_{0}\right)=12 a_{0} \sqrt{3 / 5}, \\
\langle 41,-1| R_{1}|42,-2\rangle & =\langle 21 ;-2,1 \mid 1,-1\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=\sqrt{3 / 5}\left(12 \sqrt{2} a_{0}\right)=12 a_{0} \sqrt{6 / 5}, \\
\langle 41,-1| R_{0}|42,-1\rangle & =\langle 21 ;-1,0 \mid 1,-1\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=-\sqrt{3 / 10}\left(12 \sqrt{2} a_{0}\right)=-12 a_{0} \sqrt{3 / 5}, \\
\langle 41,-1| R_{-1}|420\rangle & =\langle 21 ; 0,-1 \mid 1,-1\rangle\langle 41\|\mathbf{R}\| 42\rangle / \sqrt{3}=\sqrt{1 / 10}\left(12 \sqrt{2} a_{0}\right)=12 a_{0} / \sqrt{5} .
\end{aligned}
$$

The one right in the middle we already had from part (a).
(d) [4] To show that you understand how to do it, find $\langle 410| X|421\rangle$.

The point is simply that $R_{-1}-R_{+1}=\sqrt{2} X$, so we have

$$
\langle 410| X|421\rangle=\frac{1}{\sqrt{2}}\left(\langle 410| R_{-1}|421\rangle-\langle 410| R_{+1}|421\rangle\right)=\frac{1}{\sqrt{2}}\left(12 a_{0} \sqrt{3 / 5}-0\right)=6 a_{0} \sqrt{6 / 5} .
$$

