Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 8

8.9 [10] The quadrupole operators are spherical tensors of rank 2; that is, a spherical
tensor with £ = 2. Its components are:
1Y =4(x+iv), 1V =%xz-i¥z, 7)) =\1(22°-x*-7?)

+2

(a) [2] Show that these operators either commute or anti-commute with parity, I1.

Parity anti-commutes with the operators X, Y, and Z, so we have, for example

N7 =T1(FXZ —iYZ) =+ XTZ +iYTIZ =(FXZ —iYZ)[1 = T{TL.

It is clear this method generalizes to any of the five operators, so HTqm =T ;2)1’1 .

(b) [3] To calculate electric quadrupole radiation, it is necessary to calculate matrix

elements of the form <alm ‘Tq(z) a'l 'm’> . Based on the Wigner Eckart theorem, what

constraints can we put on m’, m, and ¢? What constraints can we put on / and /°?
The Wigner-Eckart theorem tells us that m = m'+ ¢ and / lies in the range
['=2|<1<l'+2.
(¢) [2] Based on parity, what constraints can we put on / and /°?

Take our equation showing that parity commutes with the electric quadrupole moments,
and sandwich it between two states, and we have

<alm ‘HTq(z) a’l’m’> = <alm
(1) (atm|1) a'tm) = (1) (ctm

Assuming the matrix elements don’t vanish, this can happen only if / and /” have the same parity,
that is, they are both odd or both even.
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(d)[3] Given /', what values of / are acceptable? List all acceptable values of / for /' =0,

1,2,3,4,5. AR

. . oy . ) 0] 2
Well, since / is in the range |l' — 2| <I<['+2,then if /'is two or bigger, then this 11 13
becomes /'—2</[<["+2. With the additional constraint that they be of the same 2 055’4
parity, the only possible / values are /'—2, /', and /' + 2. However, when /'is 1, the 31 1,3,5
restriction becomes that /=1 or 3, and for /”= 0, then only / =2 is allowed. The 41246
table at right summarizes this in several cases. 5 3:5:7




10. [15] Suppose the Hamiltonian takes the form 7 =P*/(2m)+V (R)+ W(|R|)(L -S),

where V and W are arbitrary real functions, and L and S are the orbital angular
momentum and spin operators. Show that if ‘P(r,t) is a solution of Schrodinger’s

equation, then so is
@ [5] ¥ (r,—t) if the particle has no spin (so the spin term isn’t there); and

We start with Schrodinger’s equation in this case, which is

2
S (r,0) ==V (1) 4V (1) (100)
Taking the complex conjugate, this implies
2
_m%qf (r,—1) = _f_mvzw* (ra—1)+ 7 (£) ¥ (r,~1).

We now change the variable 7 to — z. Note that there is also a ¢ in the derivative on the left, and
this becomes

2
m%\y* (Fot) =2V (1) 47/ (1) ¥ (1 1).

This is exactly what we wanted.

(b) [10] —ic,¥" (r,—) for a spin ¥ particle (so S =170).

The Schrédinger equation of course has a new term, so we add W (r)(L-S)¥ (r,?) at the

end. We take the complex conjugate of this expression, which yields

1O (1) = () ()W (1) ()L ) (1)

2m

Note that LY =(RxP)¥ =—ifi(rxV) ¥, so we see that L' = —L . Substituting this and then

multiply by —io, on the left everywhere, we have

1 (i, )W (1) =~ (i ) (1) 7 (1) i ) (1)

Replacing ¢ — —t as before, and writing out explicitly S =170, we have

ih%(—iay ) ¥ (r,—t)= —%Vz (—iav )‘P* (r,—t)+ V(r)(—iay )‘P* (r,—t)

o) (L ).



Looking at the explicit form of the Pauli matrices, it is easy to take the complex conjugates to
yield

—ih%(—io-y)‘{’* (r,—t)= —%Vz (—iO'V )‘P* (r,—1)+ V(r)(—ia}_ )‘P* (r,—1)
—%hW(l”)(-iO‘y )(anx -Lo,+ LZGZ)‘P* (r,—t).

Now the Pauli matrices have the property that they commute with themselves (of course) and
anti-commute with each other, so 0,0, =—0,0, and 0,0, =—0_,0,. Substituting, we have

-m%(-my)\y* (1) ==V (=io )" (r)+¥ (1) (i, )" (121

+%hW(r)(Lx0'x +Lo, +Lo, )(—iay )‘P (r,t).

Now we just reconstruct the spin operator, and we have
2

—ih%(—iay)‘l’* (r,—t):[—z"‘—vz +V(r)+W(r)(L~S)}(—iay)\P*(r,—t).
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