Physics 741 - Graduate Quantum Mechanics 1

Solutions to Chapter 8

8.9 [10] The quadrupole operators are spherical tensors of rank 2 ; that is, a spherical tensor with $\boldsymbol{k}=\mathbf{2}$. Its components are:

$$
T_{ \pm 2}^{(2)}=\frac{1}{2}(X \pm i Y)^{2}, \quad T_{ \pm 1}^{(2)}=\mp X Z-i Y Z, \quad T_{0}^{(2)}=\sqrt{\frac{1}{6}}\left(2 Z^{2}-X^{2}-Y^{2}\right)
$$

(a) [2] Show that these operators either commute or anti-commute with parity, Π.

Parity anti-commutes with the operators X, Y, and Z , so we have, for example

$$
\Pi T_{ \pm 1}^{(2)}=\Pi(\mp X Z-i Y Z)= \pm X \Pi Z+i Y \Pi Z=(\mp X Z-i Y Z) \Pi=T_{ \pm 1}^{(2)} \Pi .
$$

It is clear this method generalizes to any of the five operators, so $\Pi T_{q}^{(2)}=T_{q}^{(2)} \Pi$.
(b) [3] To calculate electric quadrupole radiation, it is necessary to calculate matrix elements of the form $\langle\alpha l m| T_{q}^{(2)}\left|\alpha^{\prime} l^{\prime} m^{\prime}\right\rangle$. Based on the Wigner Eckart theorem, what constraints can we put on m^{\prime}, m, and q ? What constraints can we put on l and l '?

The Wigner-Eckart theorem tells us that $m=m^{\prime}+q$ and l lies in the range $\left|l^{\prime}-2\right| \leq l \leq l^{\prime}+2$.
(c) [2] Based on parity, what constraints can we put on l and l '?

Take our equation showing that parity commutes with the electric quadrupole moments, and sandwich it between two states, and we have

$$
\begin{aligned}
\langle\alpha l m| \Pi T_{q}^{(2)}\left|\alpha^{\prime} l^{\prime} m^{\prime}\right\rangle & =\langle\alpha l m| T_{q}^{(2)} \Pi\left|\alpha^{\prime} l^{\prime} m^{\prime}\right\rangle \\
(-1)^{l}\langle\alpha l m| T_{q}^{(2)}\left|\alpha^{\prime} l^{\prime} m^{\prime}\right\rangle & =(-1)^{l^{\prime}}\langle\alpha l m| T_{q}^{(2)}\left|\alpha^{\prime} l^{\prime} m^{\prime}\right\rangle
\end{aligned}
$$

Assuming the matrix elements don't vanish, this can happen only if l and l ' have the same parity, that is, they are both odd or both even.
(d)[3] Given \boldsymbol{l}^{\prime}, what values of \boldsymbol{l} are acceptable? List all acceptable values of \boldsymbol{l} for $\boldsymbol{l}^{\prime}=\mathbf{0}$, 1, 2, 3, 4, 5.

Well, since l is in the range $\left|l^{\prime}-2\right| \leq l \leq l^{\prime}+2$, then if l^{\prime} is two or bigger, then this becomes $l^{\prime}-2 \leq l \leq l^{\prime}+2$. With the additional constraint that they be of the same parity, the only possible l values are $l^{\prime}-2, l^{\prime}$, and $l^{\prime}+2$. However, when l^{\prime} is 1 , the restriction becomes that $l=1$ or 3 , and for $l^{\prime}=0$, then only $l=2$ is allowed. The table at right summarizes this in several cases.

l^{\prime}	l
0	2
1	1,3
2	$0,2,4$
3	$1,3,5$
4	$2,4,6$
5	$3,5,7$

10. [15] Suppose the Hamiltonian takes the form $H=\mathbf{P}^{2} /(2 m)+V(\mathbf{R})+W(|\mathbf{R}|)(\mathbf{L} \cdot \mathbf{S})$, where V and W are arbitrary real functions, and L and S are the orbital angular momentum and spin operators. Show that if $\Psi(\mathbf{r}, t)$ is a solution of Schrödinger's equation, then so is
(a) [5] $\Psi^{*}(\mathbf{r},-t)$ if the particle has no spin (so the spin term isn't there); and

We start with Schrödinger's equation in this case, which is

$$
i \hbar \frac{\partial}{d t} \Psi(\mathbf{r}, t)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(\mathbf{r}, t)+V(\mathbf{r}) \Psi(\mathbf{r}, t)
$$

Taking the complex conjugate, this implies

$$
-i \hbar \frac{\partial}{d t} \Psi^{*}(\mathbf{r},-t)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi^{*}(\mathbf{r},-t)+V(\mathbf{r}) \Psi^{*}(\mathbf{r},-t) .
$$

We now change the variable t to $-t$. Note that there is also a t in the derivative on the left, and this becomes

$$
i \hbar \frac{\partial}{d t} \Psi^{*}(\mathbf{r},-t)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi^{*}(\mathbf{r},-t)+V(\mathbf{r}) \Psi^{*}(\mathbf{r},-t)
$$

This is exactly what we wanted.
(b) $[10]-i \sigma_{y} \Psi^{*}(\mathbf{r},-t)$ for a spin $1 / 2$ particle (so $\mathbf{S}=\frac{1}{2} \hbar \boldsymbol{\sigma}$).

The Schrödinger equation of course has a new term, so we add $W(r)(\mathbf{L} \cdot \mathbf{S}) \Psi(\mathbf{r}, t)$ at the end. We take the complex conjugate of this expression, which yields

$$
-i \hbar \frac{\partial}{d t} \Psi^{*}(\mathbf{r}, t)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi^{*}(\mathbf{r}, t)+V(\mathbf{r}) \Psi^{*}(\mathbf{r}, t)+W(r)\left(\mathbf{L}^{*} \cdot \mathbf{S}^{*}\right) \Psi^{*}(\mathbf{r}, t)
$$

Note that $\mathbf{L} \Psi=(\mathbf{R} \times \mathbf{P}) \Psi=-i \hbar(\mathbf{r} \times \nabla) \Psi$, so we see that $\mathbf{L}^{*}=-\mathbf{L}$. Substituting this and then multiply by $-i \sigma_{y}$ on the left everywhere, we have

$$
\begin{aligned}
-i \hbar \frac{\partial}{d t}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r}, t) & =-\frac{\hbar^{2}}{2 m} \nabla^{2}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r}, t)+V(\mathbf{r})\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r}, t) \\
& -W(r)\left(-i \sigma_{y}\right)\left(\mathbf{L} \cdot \mathbf{S}^{*}\right) \Psi^{*}(\mathbf{r}, t)
\end{aligned}
$$

Replacing $t \rightarrow-t$ as before, and writing out explicitly $\mathbf{S}=\frac{1}{2} \hbar \boldsymbol{\sigma}$, we have

$$
\begin{aligned}
i \hbar \frac{\partial}{d t}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t) & =-\frac{\hbar^{2}}{2 m} \nabla^{2}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t)+V(\mathbf{r})\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t) \\
& -\frac{1}{2} \hbar W(r)\left(-i \sigma_{y}\right)\left(\mathbf{L} \cdot \boldsymbol{\sigma}^{*}\right) \Psi^{*}(\mathbf{r},-t)
\end{aligned}
$$

Looking at the explicit form of the Pauli matrices, it is easy to take the complex conjugates to yield

$$
\begin{aligned}
-i \hbar \frac{\partial}{d t}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t) & =-\frac{\hbar^{2}}{2 m} \nabla^{2}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t)+V(\mathbf{r})\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t) \\
& -\frac{1}{2} \hbar W(r)\left(-i \sigma_{y}\right)\left(L_{x} \sigma_{x}-L_{y} \sigma_{y}+L_{z} \sigma_{z}\right) \Psi^{*}(\mathbf{r},-t)
\end{aligned}
$$

Now the Pauli matrices have the property that they commute with themselves (of course) and anti-commute with each other, so $\sigma_{y} \sigma_{x}=-\sigma_{x} \sigma_{y}$ and $\sigma_{y} \sigma_{z}=-\sigma_{z} \sigma_{y}$. Substituting, we have

$$
\begin{aligned}
-i \hbar \frac{\partial}{d t}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r}, t)= & -\frac{\hbar^{2}}{2 m} \nabla^{2}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r}, t)+V(\mathbf{r})\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r}, t) \\
& +\frac{1}{2} \hbar W(r)\left(L_{x} \sigma_{x}+L_{y} \sigma_{y}+L_{z} \sigma_{z}\right)\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r}, t)
\end{aligned}
$$

Now we just reconstruct the spin operator, and we have

$$
-i \hbar \frac{\partial}{d t}\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})+W(r)(\mathbf{L} \cdot \mathbf{S})\right]\left(-i \sigma_{y}\right) \Psi^{*}(\mathbf{r},-t)
$$

