Solutions to Chapter 9

3. [25] Suppose an electron lies in a region with electric and magnetic fields: $\mathbf{B}=B \hat{\mathbf{z}}$ and $\mathbf{E}=m \omega_{0}^{2} x \hat{\mathbf{x}} / e$.
(a) [2] Find the electric potential $U(x)$ such that $\mathbf{E}=-\nabla U(x)$ that could lead to this electric field.

We need the potential to get the derivative in the x-direction to yield $-m \omega_{0}^{2} x / e$, which tells us that the correct choice is $U(x)=-m \omega_{0}^{2} x^{2} / 2 e$. This is easily checked.
(b) [3] The magnetic field is independent of translations in all three dimensions. However, the electrostatic potential is independent of translations in only two of those dimensions. Find a vector potential A with $\mathbf{B}=\nabla \times \mathbf{A}$ which has translation symmetry in the same two directions.

There are always multiple ways to choose to write the vector potential. The electric potential is translation invariant in the y - and z-directions, so it makes a lot of sense to try to make our vector potential independent of these two coordinates as well. This means when we write $\mathbf{B}=\nabla \times \mathbf{A}$, we're going to need to get the magnetic field from taking derivatives in the x direction. The way the curl works, this will work out if we choose the magnetic field to lie in the y-direction, and it isn't hard to see that this works if $\mathbf{A}=B x \hat{\mathbf{y}}$.
(c) [4] Write out the Hamiltonian for this system. Eliminate B in terms of the cyclotron frequency $\omega_{B}=e B / m$. What two translation operators commute with this
Hamiltonian? What spin operator commutes with this Hamiltonian?
The Hamiltonian is

$$
\begin{aligned}
H & =\frac{1}{2 m}(\mathbf{P}+e \mathbf{A})^{2}-e U+\frac{g e}{2 m} \mathbf{B} \cdot \mathbf{S}=\frac{1}{2 m}\left[P_{x}^{2}+\left(P_{y}+e B X\right)^{2}+P_{z}^{2}\right]+\frac{1}{2} m \omega_{0}^{2} X^{2}+\frac{g e}{2 m} B S_{z} \\
& =\frac{1}{2 m}\left[P_{x}^{2}+\left(P_{y}+m \omega_{B} X\right)^{2}+P_{z}^{2}\right]+\frac{1}{2} m \omega_{0}^{2} X^{2}+\frac{1}{2} g \omega_{B} S_{z}
\end{aligned}
$$

This commutes with P_{y}, P_{z}, and S_{z}. Life is good.
(d) [3] Write your wave function in the form $\psi(\mathbf{r})=X(x) Y(y) Z(z)\left|m_{s}\right\rangle$. Based on some of the operators you worked out in part (c), deduce the form of two of the unknown functions.

Since our wave function commutes with P_{y} and P_{z}, we can choose it to be eigenstates of two of these operators, and consequently they will look like $Y(y)=e^{i k_{y} y}$ and $Z(z)=e^{i k_{z} z}$. These will have eigenvalues $\hbar k_{y}$ and $\hbar k_{z}$ under these two operators.
(e) [3] Replace the various operators by their eigenvalues in the Hamiltonian. The nonconstant terms should be identifiable as a shifted harmonic oscillator.

Replacing the operators by their eigenvalues, the Hamiltonian becomes

$$
\begin{aligned}
H & =\frac{1}{2 m}\left[P_{x}^{2}+\left(\hbar k_{y}+m \omega_{B} X\right)^{2}+\hbar^{2} k_{z}^{2}\right]+\frac{1}{2} m \omega_{0}^{2} X^{2}+\frac{1}{2} g \hbar \omega_{B} m_{s} \\
& =\frac{P_{x}^{2}}{2 m}+\frac{1}{2} m\left(\omega_{B}^{2}+\omega_{0}^{2}\right) X^{2}+\hbar k_{y} \omega_{B} X+\frac{\hbar^{2} k_{y}^{2}}{2 m}+\frac{\hbar^{2} k_{z}^{2}}{2 m}+\frac{1}{2} g \hbar \omega_{B} m_{s}
\end{aligned}
$$

The last few terms are constants, and the rest is simply a shifted harmonic oscillator.
(f) [4] Make a simple coordinate replacement that shifts it back. If your formulas match mine up to now, they should look like $X=X^{\prime}-\hbar k_{y} \omega_{B} /\left[m\left(\omega_{B}^{2}+\omega_{0}^{2}\right)\right]$.

We try the suggested substitution.

$$
\begin{aligned}
H & =\frac{P_{x}^{2}}{2 m}+\frac{1}{2} m\left(\omega_{B}^{2}+\omega_{0}^{2}\right)\left[X^{\prime}-\frac{\hbar k_{y} \omega_{B}}{m\left(\omega_{B}^{2}+\omega_{0}^{2}\right)}\right]^{2}+\hbar k_{y} \omega_{B}\left[X^{\prime}-\frac{\hbar k_{y} \omega_{B}}{m\left(\omega_{B}^{2}+\omega_{0}^{2}\right)}\right]+\frac{\hbar^{2}\left(k_{y}^{2}+k_{z}^{2}\right)}{2 m} \\
& +\frac{1}{2} g \hbar \omega_{B} m_{s} \\
& =\frac{P_{x}^{2}}{2 m}+\frac{1}{2} m\left(\omega_{B}^{2}+\omega_{0}^{2}\right) X^{\prime 2}-\frac{\hbar^{2} k_{y}^{2} \omega_{B}^{2}}{2 m\left(\omega_{B}^{2}+\omega_{0}^{2}\right)}+\frac{\hbar^{2} k_{y}^{2}}{2 m}+\frac{\hbar^{2} k_{z}^{2}}{2 m}+\frac{1}{2} g \hbar \omega_{B} m_{s}
\end{aligned}
$$

(g) [3] Find the energies of the Hamiltonian

The first two terms are simply a Harmonic oscillator, now not shifted, and the energies are just $\hbar \omega\left(n+\frac{1}{2}\right)$, where $\omega=\sqrt{\omega_{0}^{2}+\omega_{B}^{2}}$. Therefore the energies are in total

$$
E=\hbar \sqrt{\omega_{B}^{2}+\omega_{0}^{2}}\left(n+\frac{1}{2}\right)+\frac{\hbar^{2} k_{z}^{2}}{2 m}+\frac{\hbar^{2} k_{y}^{2} \omega_{0}^{2}}{2 m\left(\omega_{B}^{2}+\omega_{0}^{2}\right)}+\frac{1}{2} g \hbar \omega_{B} m_{s}
$$

(h) [3] Check that they give sensible answers in the two limits when there is no electric field (pure Landau levels) or no magnetic fields (pure harmonic oscillator plus \boldsymbol{y} and z-motion).

If there are no electric fields, then $\omega_{0}=0$, and we have $E=\frac{\hbar^{2} k_{z}^{2}}{2 m}+\hbar \omega_{B}\left(n+\frac{1}{2}+\frac{1}{2} g m_{s}\right)$. This is exactly what we would expect. If there are no magnetic fields, then $\omega_{B}=0$, and we have $E=\hbar \omega_{0}\left(n+\frac{1}{2}\right)+\hbar^{2}\left(k_{z}^{2}+k_{y}^{2}\right) / 2 m$, which is a harmonic oscillator added to motion in the y - and z-direction.

