Physics 741 — Graduate Quantum Mechanics
Solutions to Chapter 9

3. [25] Suppose an electron lies in a region with electric and magnetic fields: B = Bz and
E = mojxk/e.
(a) [2] Find the electric potential U (x) such that E = —VU (x) that could lead to this
electric field.

We need the potential to get the derivative in the x-direction to yield — ma)(fx/ e, which

tells us that the correct choice is U (x)=—ma;x"/2e. This is easily checked.

(b) [3] The magnetic field is independent of translations in all three dimensions.
However, the electrostatic potential is independent of translations in only two of
those dimensions. Find a vector potential A with B =V x A which has translation
symmetry in the same two directions.

There are always multiple ways to choose to write the vector potential. The electric
potential is translation invariant in the y- and z-directions, so it makes a lot of sense to try to
make our vector potential independent of these two coordinates as well. This means when we
write B=V x A, we’re going to need to get the magnetic field from taking derivatives in the x-
direction. The way the curl works, this will work out if we choose the magnetic field to lie in the
y-direction, and it isn’t hard to see that this works if A = Bxy.

(c) [4] Write out the Hamiltonian for this system. Eliminate B in terms of the cyclotron
frequency w, = eB/m. What two translation operators commute with this

Hamiltonian? What spin operator commutes with this Hamiltonian?

The Hamiltonian is
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This commutes with P,, P., and S.. Life is good.

(d) [3] Write your wave function in the form y (r)= X (x)Y(»)Z(z)|m,). Based on

some of the operators you worked out in part (c), deduce the form of two of the
unknown functions.

Since our wave function commutes with P, and P-, we can choose it to be eigenstates of
two of these operators, and consequently they will look like ¥ (y)=¢"" and Z(z)=¢"".

These will have eigenvalues 7k, and 7k, under these two operators.



(e) [3] Replace the various operators by their eigenvalues in the Hamiltonian. The non-
constant terms should be identifiable as a shifted harmonic oscillator.

Replacing the operators by their eigenvalues, the Hamiltonian becomes
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The last few terms are constants, and the rest is simply a shifted harmonic oscillator.

(f) [4] Make a simple coordinate replacement that shifts it back. If your formulas
match mine up to now, they should look like X = X' -7k o, / [m (a)é +w} )} .

We try the suggested substitution.
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(g) [3] Find the energies of the Hamiltonian

The first two terms are simply a Harmonic oscillator, now not shifted, and the energies
are just 1w (n+1), where @ =/; +w; . Therefore the energies are in total
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(h) [3] Check that they give sensible answers in the two limits when there is no electric

field (pure Landau levels) or no magnetic fields (pure harmonic oscillator plus y-
and z-motion).

272
If there are no electric fields, then @, =0, and we have E = ke, hoy (n+++3gm,).
m

This is exactly what we would expect. If there are no magnetic fields, then @, =0, and we have

E =ha,(n +%) +R (kz2 + kf, ) / 2m , which is a harmonic oscillator added to motion in the y- and
z-direction.



