
Physics 741 – Graduate Quantum Mechanics 1 

Final Exam, Fall 2015 
 
 Each question is worth 25 points, with points for each part marked separately.  Some 
possibly useful formulas appear at the end of the test. 
 
1. Charmonium is a bound state of a charm quark (spin 1

1 2s  ) and anti-charm quark (spin 
1

2 2s  ).  Although there are many bound states of charmonium, the lowest energy states have 

orbital angular momentum l = 0 or l = 1. 
(a) [3] What are the possible values for the total spin s of charmonium, corresponding to the 

total spin 1 2 S S S ? 

(b) [8] For each of the cases in part (a), and for each of the cases l = 0 or l = 1, what is the 
possible value of  j of charmonium, corresponding to the total angular momentum 

1 2  J L S S ? 

(c) [10] Suppose one of the states found in part (b) is found to be an eigenstate of zJ  with 

eigenvalue 2  .  Predict what possible eigenvalues the following operators might have: 
2 2 2

1 2, , , , , ,z z z zL S S SJ L S . 

(d) [4] Is the charm quark a fermion or boson?  What about the anti-charm quark?  What 
about the composite charmonium particles? 

 
2. A sodium atom in the 3P3/2 state decays by emitting a photon to end up in the 2S1/2 state.  The 

rate for the decay to a particular polarization can be written in terms of the matrix elements 

  1 31
2 23 , , 3 , ,qS m R P m  

 where 1
2  and 3

2  denote the total angular quantum number j for the initial and final atom, m 

and m' correspond to the z-component of the initial and final angular momenta, and  1
qR  are a 

set of three rank-one spherical tensors, with  1,0,1q  . 

(a) [13] Give a complete list of the values of the triplets (m, q, m') such that this matrix 
element that does not vanish. 

(b) [12] Suppose the reduced matrix element were known, so that  1 31
2 23 , 3 ,S R P A .  

Write the matrix elements from part (a) in terms of A and appropriate Clebsch-Gordan 
coefficients. 

 

3. An electron is in spin state  1
2

ie      , but the angle , is unknown, and uniformly 

distributed between 0 and .  Note that spin operators and Pauli matrices appear among the 
helpful formulas on the formula sheets. 
(a) [8] Compute the state operator (also known as density matrix) in matrix form.  Check that 

the trace is correct.  
(b) [9] Calculate the expectation values of the three spin operators S .  

(c) [8] Show that if the Hamiltonian is of the form yH   , then   is time-independent. 



4. In one of your problem sets, you showed that a spinless particle of mass m in a potential 
  2 21

2V mr r  has eigenstates , ,n l m  with energy  3
2E n  , and l and m are the 

quantum numbers corresponding to L2 and Lz respectively.  In this problem, an electron 
(which has spin) of mass m will be influenced by scalar and vector potentials 

     21 1
2 2

ˆ ˆandU X Y    R R A R y x  

(a) [5] Find the electric and magnetic fields at all points. 
(b) [8] For an electron, write down the full Hamiltonian, expanding it out in powers of  .   

Show that some of the terms proportional to   can be written in terms of Lz. 
(c) [6] If 0  , find the eigenstates and energies of the resulting Hamiltonian. 

(d) [6] Suppose 0  , but assume   is small enough that the 2  terms can be dropped.  
Show that the eigenstates of part (c) are still eigenstates.  Find the new energy 
eigenvalues. 

 
5. Two spinless non-interacting particles have mass m and are both in an infinite square well 

with allowed region 0 x a  .  The one-particle eigenstate wave functions are 

   2 sinn x a n x a  , which have energy  2 2 2 22nE n ma  . 

(a)  [6] If the two particles are non-identical particles, write explicitly the wave function 
 1 2,x x  if the first one has n = 1 and the second has n = 2.  What is the energy of this 

state? 
(b) [9] If the two particles are identical, write explicitly the wave function if one has n = 1 

and the other has n = 2, if they are (i) bosons or (ii) fermions. 
(c) [10] For each of the three cases (non-identical, bosons, or fermions) find the probability 

density that both particles are simultaneously at 1
3x a .  If the particles actually repel 

each other, so they don’t like to be at the same place, which case would probably result in 
the lowest energy? 

 
6. Consider N identical non-interacting spin-1/2 particles in a one-dimensional harmonic 

oscillator with potential   2 21
2V x m x . 

(a) [3] What are the energy eigenstates for a single particle?  If we take spin into account, 
does this energy change, and how many particles fit into each state? 

(b) [12] If we have N particles in the ground state, which states will be occupied?  Define the 
Fermi energy as the average of the highest occupied state and the first unoccupied state.  
What is the Fermi energy?  Work this out in both the even and the odd case. 

(c) [10] What is the exact total energy for all the particles? For this part, assume N is even.  
Write your answer in the form tot FE NE  

 

Possibly Useful Sums:     
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