Physics 741 - Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall 2016

1. Consider the wave function $\psi(x)=\left\{\begin{array}{cl}N x(a-x) & 0<x<a, \\ 0 & \text { otherwise }\end{array}\right.$

Once properly normalized, this wave function has $\langle X\rangle=\frac{1}{2} a$ and $\left\langle X^{2}\right\rangle=\frac{2}{7} a^{2}$.
(a) [5] What is the correct normalization N ?

We insist that the normalization integral yields one, so we have

$$
\begin{gathered}
1=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=N^{2} \int_{0}^{a}[x(a-x)]^{2} d x=N^{2} \int_{0}^{a}\left(a^{2} x^{2}-2 a x^{3}+x^{4}\right) d x \\
=\left.N^{2}\left(\frac{1}{3} a^{2} x^{3}-\frac{1}{2} a x^{4}+\frac{1}{5} x^{5}\right)\right|_{0} ^{a}=N^{2} a^{5}\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{5}\right)=\frac{1}{30} N^{2} a^{5}, \\
N=\sqrt{30 / a^{5}} .
\end{gathered}
$$

(b) [8] What are $\langle P\rangle$ and $\left\langle P^{2}\right\rangle$ for this state?

We simply insert the operator $P=-i d / d x$ to find

$$
\begin{aligned}
\langle P\rangle & =-i \hbar \int_{-\infty}^{\infty} \psi^{*}(a) \frac{d}{d x} \psi(x) d x=N^{2} \int_{0}^{a}[x(a-x)] \frac{d}{d x}[x(a-x)] d x \\
& =-i \hbar \frac{30}{a^{5}} \int_{0}^{a}\left(a x-x^{2}\right)(a-2 x) d x=-i \hbar \frac{30}{a^{5}} \int_{0}^{a}\left(a^{2} x-3 a x^{2}+2 x^{4}\right) d x \\
& =-\left.i \hbar \frac{30}{a^{5}}\left(\frac{1}{2} a^{2} x^{2}-a x^{3}+\frac{1}{2} x^{4}\right)\right|_{0} ^{a}=-i \hbar \frac{30}{a} 60\left(\frac{1}{2}-1+\frac{1}{2}\right)=0, \\
\left\langle P^{2}\right\rangle & =-\hbar^{2} \int_{-\infty}^{\infty} \psi^{*}(a) \frac{d^{2}}{d x^{2}} \psi(x) d x=-\hbar^{2} \frac{30}{a^{5}} \int_{0}^{a}[x(a-x)] \frac{d^{2}}{d x^{2}}[x(a-x)] d x \\
& =\frac{60 \hbar^{2}}{a^{5}} \int_{0}^{a}\left(a x-x^{2}\right) d x=\left.\frac{60 \hbar^{2}}{a^{5}}\left(\frac{1}{2} a x^{2}-\frac{1}{3} x^{3}\right)\right|_{0} ^{a}=\frac{60 \hbar^{2}}{a^{3}}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{10 \hbar^{2}}{a^{2}} .
\end{aligned}
$$

(c) [7] Find the uncertainties Δx and Δp and show that they satisfy the uncertainty relation.

$$
\begin{aligned}
& \Delta x=\sqrt{\left\langle X^{2}\right\rangle-\langle X\rangle^{2}}=\sqrt{\frac{2}{7} a^{2}-\left(\frac{1}{2} a\right)^{2}}=a \sqrt{\frac{2}{7}-\frac{1}{4}}=a \sqrt{\frac{1}{28}}=\frac{1}{\sqrt{28}} a, \\
& \Delta p=\sqrt{\left\langle P^{2}\right\rangle-\langle P\rangle^{2}}=\sqrt{\frac{10 \hbar^{2}}{a^{2}}-0^{2}}=\frac{\sqrt{10} \hbar}{a} .
\end{aligned}
$$

This yields $(\Delta x)(\Delta p)=\sqrt{\frac{5}{14}} \hbar=0.578 \hbar>\frac{1}{2} \hbar$.
2. A particle of mass \boldsymbol{m} lies in the infinite square well with allowed region $0<x<a$. The wave function takes the form $\psi(x)=\left\{\begin{array}{cc}N \sin ^{2}(\pi x / a) & 0<x<a, \\ 0 & \text { elsewhere. }\end{array}\right.$
(a) [5] Determine the normalization constant N.

With the help of the helpful integrals, we have

$$
\begin{gathered}
1=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=N^{2} \int_{0}^{a} \sin ^{4}(\pi x / a) d x=N^{2} \int_{0}^{a} \sin ^{2}(\pi x / a) \sin ^{2}(\pi x / a) d x=\frac{3}{8} N^{2} a, \\
N=\sqrt{8 / 3 a} .
\end{gathered}
$$

(b) [7] Write this state in the form $|\psi\rangle=\sum_{n} c_{n}\left|\phi_{n}\right\rangle$, where $\left|\phi_{n}\right\rangle$ are the energy eigenstates. Some helpful integrals are provided.

The normalized energy eigenstates and eigenvalues are given by

$$
\phi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi n x}{a}\right), \quad E_{n}=\frac{\pi^{2} n^{2} \hbar^{2}}{2 m a^{2}}
$$

The overlap c_{n} are given by

$$
c_{n}=\left\langle\phi_{n} \mid \psi\right\rangle=\sqrt{\frac{2}{a}} \sqrt{\frac{8}{3 a}} \int_{-a}^{a} \sin \left(\frac{\pi n x}{a}\right) \sin ^{2}\left(\frac{\pi x}{a}\right) d x=\frac{4}{\sqrt{3} a} \frac{4 \cdot 1^{2} a}{\pi n\left(4-n^{2}\right)} \quad \text { if } n \text { odd, zero otherwise. }
$$

Simplifying and substituting into the sum, we have

$$
|\psi\rangle=\sum_{n \text { odd }} \frac{16}{\pi n \sqrt{3}\left(4-n^{2}\right)}\left|\phi_{n}\right\rangle .
$$

(c) [8] If we were to measure the energy, what would be the possible outcomes and corresponding probabilities? Give a general formula, and find the numeric value as a percentage for the first three non-zero outcomes.

The energies were given above, namely $E_{n}=\pi^{2} n^{2} \hbar^{2} / 2 m a^{2}$, but the probability vanishes unless n is odd. For n odd, we have

$$
P(n)=\left|\left\langle\phi_{n} \mid \psi\right\rangle\right|^{2}=\left|c_{n}\right|^{2}=\frac{256}{3 \pi^{2} n^{2}\left(n^{2}-4\right)^{2}} .
$$

The table at right gives the resulting probabilities for the first three non-zero cases. Note that the probabilities add to 99.99%. They should total one, which doubtless just represents the contribution

n	E_{n}	$P(n)$
1	$\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$	96.07%
3	$\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$	3.84%
5	$\frac{25 \pi^{2} \hbar^{2}}{2 m a^{2}}$	0.08%

3. Consider the harmonic oscillator with mass m and angular frequency ω. At $t=0$, the system is in the state $|\Psi(t=0)\rangle=N \sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}}|n\rangle$.
(a) [7] What is the correct normalization N ? Some helpful sums are given on the next page.

We need to have

$$
\begin{gathered}
1=\langle\Psi \mid \Psi\rangle=N^{2} \sum_{p=1}^{\infty} \frac{(-i)^{p}}{p^{2}}\langle p| \sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}}|n\rangle=N^{2} \sum_{p=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-i)^{p} i^{n}}{p^{2} n^{2}} \delta_{n p}=N^{2} \sum_{n=1}^{\infty} \frac{1}{n^{4}}=N^{2} \zeta(4)=\frac{\pi^{4} N^{2}}{90}, \\
N=\sqrt{90} / \pi^{2} .
\end{gathered}
$$

(b) [5] Find the value of $\langle P\rangle$ for this state. Simplify as much as possible.

We write the operators in terms of raising and lowering operators, so we have

$$
\begin{aligned}
\langle P\rangle & =\langle\Psi| P|\Psi\rangle=\frac{90}{\pi^{4}} i \sqrt{\frac{1}{2} \hbar m \omega}\left[\sum_{p=1}^{\infty} \frac{(-i)^{p}}{p^{2}}\langle p|\right]\left(a^{\dagger}-a\right)\left[\sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}}|n\rangle\right] \\
& =\frac{45}{\pi^{4}} i \sqrt{2 \hbar m \omega}\left[\sum_{p=1}^{\infty} \frac{(-i)^{p}}{p^{2}}\langle p|\right]\left[\sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}}(\sqrt{n+1}|n+1\rangle-\sqrt{n}|n-1\rangle)\right] \\
& =\frac{45}{\pi^{4}} i \sqrt{2 \hbar m \omega}\left[\sum_{p=1}^{\infty} \sum_{n=1}^{\infty} \frac{i^{n}(-i)^{p}}{n^{2} p^{2}}\left(\sqrt{n+1} \delta_{n+1, p}-\sqrt{n} \delta_{n-1, p}\right)\right]
\end{aligned}
$$

The smart way to simplify this is to use the delta function to do the p-sum on the first term and to do the n - sum on the second term. Then we have

$$
\begin{aligned}
\langle P\rangle & =\frac{45}{\pi^{4}} i \sqrt{2 \hbar m \omega}\left[\sum_{n=1}^{\infty} \frac{i^{n}(-i)^{n+1}}{n^{2}(n+1)^{2}} \sqrt{n+1}-\sum_{p=1}^{\infty} \frac{i^{p+1}(-i)^{p}}{p^{2}(p+1)^{2}} \sqrt{p+1}\right] \\
& =\frac{45}{\pi^{4}} \sqrt{2 \hbar m \omega}\left[\sum_{n=1}^{\infty} \frac{1}{n^{2}(n+1)^{3 / 2}}+\sum_{p=1}^{\infty} \frac{1}{p^{2}(p+1)^{3 / 2}}\right]=\frac{90}{\pi^{4}} \sqrt{2 \hbar m \omega} \sum_{n=1}^{\infty} \frac{1}{n^{2}(n+1)^{3 / 2}} .
\end{aligned}
$$

Other than numerically, I don't know of any way to simplify this further.

(c) [8] What is $|\Psi(t)\rangle$ at all times?

Each of the eigenstates has energy $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$, so when we include time-dependance, they simply pick up a factor of $\exp \left(-i E_{n} t / \hbar\right)=\exp \left[-i\left(n+\frac{1}{2}\right) \omega t\right]$. So the time state vector is

$$
|\Psi(t)\rangle=\sum_{n=1}^{\infty} c_{n} e^{-i\left(n+\frac{1}{2}\right) \omega t}|n\rangle=\frac{3 \sqrt{10}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}} e^{-i\left(n+\frac{1}{2}\right) \omega t}|n\rangle .
$$

4. A hydrogen atom is in the state $|n, l, m\rangle=|2,1,0\rangle$.
(a) [6] What would be the result if you measure the energy, orbital angular momentum squared L^{2} and z-component L_{z} ?

Because we are in an eigenstate of all three quantities, the three requested quantities are given by

$$
\begin{gathered}
E=-\frac{13.6 \mathrm{eV}}{n^{2}}=-\frac{13.6 \mathrm{eV}}{2^{2}}=-3.40 \mathrm{eV} \\
\mathbf{L}^{2}=\hbar^{2}\left(l^{2}+l\right)=\hbar^{2}\left(1^{2}+1\right)=2 \hbar^{2} \\
L_{z}=\hbar m=0
\end{gathered}
$$

(b) [6] Write the explicit form of the wave function $\psi(r, \theta, \phi)$.

We simply write it down using

$$
\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m}(\theta, \phi)=R_{21}(r) Y_{1}^{0}(\theta, \phi)=\frac{r e^{-r / 2 a}}{2 \sqrt{6 a^{5}}} \frac{\sqrt{3}}{2 \sqrt{\pi}} \cos \theta=\frac{r e^{-r / 2 a}}{4 \sqrt{2 \pi a^{5}}} \cos \theta
$$

(c) [8] Calculate the expectation value $\left\langle R^{-1}\right\rangle$ for this wave function, where \boldsymbol{R} is the distance from the origin operator.

We can save some steps using the fact that the spherical harmonics are orthonormal when integrated over angles, so we have

$$
\begin{aligned}
\left\langle R^{-1}\right\rangle & =\int \psi_{210}^{*}(\mathbf{r}) r^{-1} \psi_{210}(\mathbf{r}) d^{3} \mathbf{r}=\int_{0}^{\infty}\left[R_{21}(r)\right]^{2} r^{2} r^{-1} d r \int Y_{1}^{0}(\theta, \phi)^{*} Y_{1}^{0}(\theta, \phi) d \Omega \\
& =\int_{0}^{\infty}\left[\frac{r e^{-r / 2 a}}{2 \sqrt{6 a^{5}}}\right]^{2} r d r=\frac{1}{24 a^{5}} \int_{0}^{\infty} r^{3} e^{-r / a} d r=\frac{1}{24 a^{5}} a^{4} 3!=\frac{1}{4 a} .
\end{aligned}
$$

5. In a certain basis, the state vector is given by $|\Psi\rangle=\binom{\frac{1}{3}+\frac{2}{3} i}{\frac{2}{3}}$, and the spin operator in the \boldsymbol{x}-directions is given by $S_{x}=\frac{1}{2} \hbar \sigma_{x}=\frac{1}{2} \hbar\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(a) [10] Find the eigenvalues and normalized eigenvectors of S_{x}.

We first find the eigenvalues and eigenvectors of the Pauli matrix σ_{x}, which are found from

$$
\begin{aligned}
& 0=\operatorname{det}\left(\sigma_{x}-\lambda \mathbf{1}\right)=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 1 \\
1 & \lambda
\end{array}\right)=\lambda^{2}-1 \\
& \lambda= \pm 1
\end{aligned}
$$

The eigenvalues for S_{x} will then be $\pm \frac{1}{2} \hbar$. We can then find the eigenvectors by giving them arbitrary components, and solving the eigenvector equation, so we have

$$
\pm\binom{\alpha}{\beta}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}=\binom{\beta}{\alpha}, \quad \text { so } \quad \beta= \pm \alpha, \quad\left| \pm \frac{1}{2} \hbar\right\rangle=\binom{\alpha}{ \pm \alpha}
$$

Normalizing them, we find $2 \alpha^{2}=1$, so $\alpha=1 / \sqrt{2}$, and we have'

$$
\left| \pm \frac{1}{2} \hbar\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm 1}
$$

(b) [10] If you measured S_{x}, what is the probability that you get each of the possible eigenvalues you found in part (a)? What would be the state vector afterwards?

The probabilities are given by

$$
\begin{aligned}
& P\left(+\frac{1}{2} \hbar\right)=\left|\left\langle\left.+\frac{1}{2} \hbar \right\rvert\, \psi\right\rangle\right|^{2}=\left.\frac{1}{2}\left|\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{\frac{1}{3}+\frac{2}{3} i}{\frac{2}{3}}\right|\right|^{2}=\frac{1}{2}\left|\frac{1}{3}+\frac{2}{3} i+\frac{2}{3}\right|^{2}=\frac{1}{2}\left[1+\left(\frac{2}{3}\right)^{2}\right]=\frac{13}{18}, \\
& P\left(-\frac{1}{2} \hbar\right)=\left|\left\langle\left.-\frac{1}{2} \hbar \right\rvert\, \psi\right\rangle\right|^{2}=\frac{1}{2}\left|\left(\begin{array}{ll}
1 & -1
\end{array}\right)\binom{\frac{1}{3}+\frac{2}{3} i}{\frac{2}{3}}\right|^{2}=\frac{1}{2}\left|\frac{1}{3}+\frac{2}{3} i-\frac{2}{3}\right|^{2}=\frac{1}{2}\left[\left(-\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}\right]=\frac{5}{18} .
\end{aligned}
$$

Since there are no states with degenerate eigenvalues, you must (up to a phase) end up in these eigenstates, so in the first case you will end up in the state $\left|+\frac{1}{2} \hbar\right\rangle$ and in the latter case $\left|-\frac{1}{2} \hbar\right\rangle$.

Possibly Helpful Formulas:

$\underline{\text { Harmonic Oscillator }}$	Radial Wave Functions $X=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right)$	$\underline{\text { Spherical Harmonics }}$	Hydrogen Energy $P=i \sqrt{\frac{1}{2} \hbar m \omega}\left(a^{\dagger}-a\right)$ $a\|n\rangle=\sqrt{n}\|n-1\rangle$ $R_{10}(r)=\frac{2 a_{0}}{\sqrt{a^{3}}}$
$R_{20}^{\dagger}(r)=\frac{e^{-r / 2 a}}{\sqrt{2 a^{3}}}\left(1-\frac{r}{2 a}\right)$	$Y_{1}^{0}(\theta, \phi)=\frac{\sqrt{3}}{2 \sqrt{\pi}} \cos \theta$	$E=-\frac{13.6 \mathrm{eV}}{n^{2}}$	

Possibly Helpful Integrals:

Definite Integrals: n and p are assumed to be positive integers
$\int_{0}^{\infty} x^{n} e^{-\alpha x} d x=\frac{n!}{\alpha^{n+1}}, \quad \int_{0}^{a} \sin \left(\frac{\pi n x}{a}\right) d x=\left\{\begin{array}{cc}\frac{2 a}{\pi n} & \text { if } n \text { odd, } \quad \\ 0 & \text { if } n \text { even. }\end{array} \quad \int_{0}^{a} \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi p x}{a}\right) d x=\frac{1}{2} a \delta_{n p}\right.$.
$\int_{0}^{a} \sin \left(\frac{\pi n x}{a}\right) \sin ^{2}\left(\frac{\pi p x}{a}\right) d x=\left\{\begin{array}{cc}\frac{4 p^{2} a}{\pi n\left(4 p^{2}-n^{2}\right)} & \text { if } n \text { odd, } \\ 0 & \text { if } n \text { even. }\end{array} \quad \int_{0}^{a} \sin ^{2}\left(\frac{\pi n x}{a}\right) \sin ^{2}\left(\frac{\pi p x}{a}\right) d x=a\left(\frac{1}{4}+\frac{1}{8} \delta_{n p}\right)\right.$.

Possibly helpful sums:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}=\zeta(k), \quad \sum_{n=1}^{\infty} \frac{(-1)^{k}}{n^{k}}=\left(2^{1-k}-1\right) \zeta(k), \quad \zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90}, \quad \zeta(6)=\frac{\pi^{6}}{945} .
$$

