
Physics 741 – Graduate Quantum Mechanics 1 

Solution to Midterm Exam, Fall 2018 
 
 Please note that some possibly helpful formulas and integrals appear on the second page.  
Note also that there is one problem on the second page.  Each question is worth 20 points, with 
points for each part marked separately. 
 

1. Consider the wave function    212 for 0,

0 for 0 .
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(a) [16] What are X , P , 2X , and 2P  for this state? 

 
 We simply work these out, one at a time: 
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(b) [4] Find the uncertainties x  and p , and show they satisfy the uncertainty relation. 
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2. A particle of mass m lies in the infinite square well with allowed region 0 x a  .  The 
wave function at t = 0 in this region is 

         ,0 2 3 sin 1 cos 2x x a x a i x a         . 

(a) [7] Write this state in the form n nn
c  , where n  are the energy 

eigenstates.  Some helpful formulas are provided on the next page.  
 
 The normalized eigenstates and energies are given in the helpful equations.  To find the 
coefficients cn, we simply use the equations 
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The only positive values of n for which this doesn’t vanish are 3, 5, and 7, so we have 2
5 3c   

and 3 7 6
ic c  , all other ci’s vanish.  We therefore write the initial state as 

2
3 5 736 6
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(b) [7] Check the normalization in both the coordinate and eigenstate basis. 

 
 In the coordinate basis, this is 
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In the eigenstate basis, this is far simpler: 
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(c) [6] Write the wave function  ,x t  at all times.   

 

 The general formula for the state vector is   niE t
n nn

t c e    .  Substituting in the 

explict form for our states and energies, we have 
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3. A particle of mass m lies in the potential      22 2 2 2 2 2, ,V x y z x y z x y y z z x       . 

 Consider the rotation operator that rotates the three coordinates among each other, so 
that    , , , ,x y z y z x , i.e. , ,x y y z z x     . 

(a) [6] Show that this is a symmetry operation; that is, V is unchanged by this 
transformation.  You may assume that the kinetic term in the Hamiltonian is also 
unchanged. 

 
 We simply check if    , , , ,V x y z V x y z    : 

         22 2 2 2 2 2, , , , , ,V x y z V y z x y z x y z z x x y V x y z            . 

That was easy! 
 

(b) [7] Argue that if this symmetry operation were performed a particular number of 
times, the resulting symmetry operation would correspond with the identity 
operation.  How many times? 

 
 If we perform the symmetry operation three times, we would have 

          , , , , , , , ,x y z y z x z x y x y z         

Hence the rotation cubed is 3 1 , the identity rotation, and hence if  R   is the 

corresponding operator, we would have            3 3 1 1R R R R R R          . 

 
(c) [7] Argue that eigenstates of the Hamiltonian can be chosen to also be eigenstates of 

this symmetry operation.  What are the possible eigenvalues of these states under 
the symmetry operation? 

 
 Since the rotation leaves the potential unchanged, this means the corresponding operator 
commutes with the potential, and since we are allowed to assume the same thing about the 
kinetic term,  R   commutes with the Hamiltonian.  Hence we can diagonalize these 

simultaenously, and our eigenstates of the Hamiltonian will look like , n , with eigenvalue nE  

under the Hamiltonian, and eigenvalue   under  R  . Because rotating it three times brings it 

back to itself, we must have 

      33 3, 1 , , , , .n R n R n R n n             

We therefore have 3 1  , an equation with solutions 2 3ije    for j = 0, 1, and 2.  Working 

these out in each case, the solutions are 1   and 31
2 2 i    . 

 
 
 



4. A particle is in the state  
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 is measured. 

What are the possible outcomes, and what would be the corresponding probabilities?  
For each of these possible outcomes, what would be the state vector after 
measurrement? 

 
 The first step is to find the eigenvalues and eigenvectors of B.  We first note that B is 
block diagonal, and therefore we can immediately identify one of the eigenvalues as b, which 
corresponds to an eigenvector with just 1 in the third position  The remaining two eigenvectors 
and eigenvalues require that we diagonalize the first two rows an colums of the matrix, which if 

you remove the factor of b just requires that we find the eigenvalues and eigenvectors of  0 1

1 0
.  

We do this by solving the characteristic equation, which is 

  21
0 det 1 1 1 , 1.
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It is not hard to find and normalize the corredponding eigenvectors, which work out to be  11
2 1

.  

When you put back in the factor of b, expand these back to all three components, and add in the 
eigenstate we found trivially, we find the three eigenstates: 
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The only possible outcomes of the measurement are the eigevnalues b .  We note that two of 
the states have the same eigenvalue.   
 Now we start calculating probabilities and finding the state afterwards. For b, we find 
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The state vector afterwards is 
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For  outcome –b, we have 
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Of course, because there was only one eigenstate with this eigenvalue, the final state was 
inevitable. 
 
 
5. A particle of mass m  is in an infinite square well with a 

spike in the middle, with potential  
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 This potential is sketched at right.  In region 1, the solution to Schrödinger’s equation is 
 1 sin ka kx    with energy 2 2 22E k ma  . 

(a) [7] Argue based on symmetry that there are “even” and “odd” solutions.  For the 
odd solutions, argue that  0 0  .  Find all possible values for k in this case. For 

the even solutions, show in region 2 that    2 sinx ka kx   . 

 
 The potential is symmetric,    V x V x  .  As argued in class, under this assumption 

we expect our eigenstates to also be eigenstates of parity, with eigenvalue 1 , and therefore 
   x x    , which we call the even (+) and odd (–) states. 

 For odd solutions, we have    x x    , which at zero gives  0 0  .  Hence we 

have  sin 0ka  , which has solutions whenever ka n , so k n a . For even solutions, 

region 2 is just the reflection of region 1, so      2 1 sinx x ka kx     .  

 
(b) [7] Integrate Schrödinger’s equation from   to   across the origin, in the limit 

0   to find a formula for the discontinuity in the derivative. 
 
 We start with Schrödinger’s equation with the potential and integrate it over this small 
region: 
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where we used the fundemental theorem of calculus to simplify the first term.  In the limit 
0  , the left side will vanish, and this formula becomes simply 

     21
1 22 0 0 0 .m        
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(c) [6] For the even solutions, use this to find a formula for  cotk ka . 

 
 Using our explicit formula in the two regions, this simply says 
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Possibly Helpful Formulas: 
 

 
 
 

 
 
Possibly Helpful Integrals: n, p and q are assumed to be positive integers 
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