
Physics 741 Name _____________________________ 
Solutions to Final Exam, Fall 2022 

 
 Each question is worth 25 points, with points for each part marked separately.  Some 
possibly useful formulas can be found at the end of the exam. 
 
1. A new particle has just been discovered!  It is exactly like an electron except that in 

addition to having a Coulomb attraction to the proton ( ) 2
c eV r k e r= − , there is an 

additional repulsive term ( ) 2 26rV r rµ= +  . 
(a) [4] Given that the potential depends only on r, what can we say about the bound 

states in terms of their dependence on angle and radius?  Be as explicit as possible 
about the dependence on the angular part. 

 
 Since it is spherically symmetric, the wave functions will automatically take the form  

( ) ( ) ( ), , ,m
lr R r Yθ φ θ φΨ = . 

 
(b) [5] Write an ordinary differential equation for the radial wave function R(r).  

 
 The differential equation for R is given in the equations, it is 
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We note that the equation is identical to hydrogen, except that 2l l+  has been modified to 
2 12l l+ + . 

 
(c) [7] Assume the ground state of modified hydrogen has l = 0. Based on this, show that 

the radial wave function for the ground state of modified hydrogen will be exactly 
like the equation for regular hydrogen with a different l value.  What would be the 
corresponding l value for hydrogen? 

 
 For the ground state, we expect l = 0 (which also implies m= 0). The equation for 
modified hydrogen for l = 0 states will therefore be 

( )
22 2 2
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ek edER rR R R
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This is identical to the equation for hydrogen with l = 3.  Therefore, the solutions of the equation 
will be identical to the hydrogen wave functions with l = 3. 
 



(d) [5] Write the full wave function ( ), ,rψ θ φ for the ground state of modified hydrogen.  
Some hydrogen wave functions can be found on the equation sheet. 

 
 The lowest energy state for ordinary hydrogen for a given l will have the smallest n.  But 
we always have n > l, so for l = 3 this would be n = 4.  The lowest energy state will therefore be 
radial wave function R43(r).  However, the angular wave function will have l = 0, m = 0, so we 
have 

( ) ( ) ( )
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(e) [4] For ordinary hydrogen, the energy is given by 
2 2

22n
cE

n
α µ

= − .  What is the energy 

of the ground state for modified hydrogen? 
 
 The ground state wave function satisfies the radial equation for n = 4, so even though it is 
the ground state, the energy will be modified to be 2 21

32gE cα µ= − . 
 
 
2. A single electron lies in a hydrogen atom in the state 

1 1 1
2 22 2

2,0,0, 2,1, 1,iψ = − + + + , in standard notation , , , sn l m m  , where n 

corresponds to the energy, l to L2, m to Lz and ms to Sz.  For each of the following 
operators, find the expectation values: 
(a) [5] zL   (b) [5] 2L  (c) [5] zJ  (d) [10] 2J  

 
 The first term has eigenvalue 0zL m= =  and the second zL m= =  , so we have 
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 For L2, the first term has eigenvalue ( )2 2 2 0l l= + =L   and the second 

( )2 2 2 22l l= + =L   , so we have 
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Calculating zJ  is slightly trickier.  We first note that z z zJ L S= + , and therefore its 

eigenvalues are z sJ m m= +  , so the first term has eigenvalue ( )1 1
2 20zJ = − = −  , and the 

second term has eigenvalue ( ) 31
2 21zJ = + =  .  We therefore have 
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 Calculating 2J  seems much harder.  We need to know the quantum number j for each 

state, but they aren’t even written as eigenstates of J2, which makes this tricky, and makes it 
sound like we are going to need Clebsch-Gordan coefficients.  For the first term, we are 
combining an l = 0 state with an electron with s = ½, and these combine to make states with 

1
2j =  as the only possibility, so this state is an eigenstate of J2.  For the second term, we are 

combining an l = 1 state with an electron with s = ½, so this time we could have 1
2j =  or 3

2j = .  

However, because we now this state has ( ) 31
2 21zJ = + =  , 3

2jm = , but 3
2jj m≥ = .  So the 

only option is 3
2j = .  Hence the states have eigenvalues ( )2 2 2 23

4j j= + =J    for the first state 

and ( )2 2 2 215
4j j= + =J    for the second. Hence we have 
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3. An electron of mass m lies in a region with electric field ( )2

0 ˆ ˆm x y eω= +E x y and 
magnetic field ˆB=B z . 
(a) [7] Show that these can be obtained with a scalar potential ( )2 2U a x y= +  and 

vector potential ( ) ( )ˆ ˆb x y= −A r y x , and find the coefficients a and b. 
 

 The electric field is given by ( ) ( )2 2 ˆ ˆ2U a x y a x y
t

∂
= −∇ − = − ∇ + = − +

∂
AE x y . 

Comparison with the desired form tells us 2
0 2a m eω= − . The magnetic field is given by 

= ∇×B A , whose components work out to 

( ) ( ) ( ) ( )0 0, 0 0, 2 .x y zB bx B by B bx bx b
y z z z x y
∂ ∂ ∂ ∂ ∂ ∂

= − = = − − = = − − =
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Matching with the desired form, we see that b = B/2.  So our scalar and vector potentials are 

( ) ( )
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(b) [7] Write the Hamiltonian explicitly. It may be helpful to expand it out. 
 
 The Hamiltonian is given in the equations, but we want to substitute  e= +π P A  in 
explicitly.  We find 
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(c) [6] Demonstrate that this Hamiltonian commutes with one of the three momentum 

operators P, one of the three angular momentum operators L, and one of the three 
spin operators S.  Which one, in each case?  Do they commute with each other? 

 
 This first term commutes with all components of P, as does the last.  The third term is has 
no z’s in it, so it commutes with Pz, and Lz also does. So Pz commutes. 
 All the angular momentum operators L commute with the first and last term, and because 
the third term is rotationally invariant about the z-axis, it commutes with Lz.  Obviously, so does 
the second term, so Lz commutes. 
 All components of the spin S commute with the first three terms, but Sz is the only one 
that commuted with the last term. 
 In summary, the three operators { }, ,z z zP L S  all commute with the Hamiltonian.  They 
also commute with each other, so they can be simultaneously diagonalized. 
 

(d) [5] Call the three eigenvalues under the operators k , m , and sm respectively. 
Are there any restrictions on these eigenvalues?   

 
 If we call the eigenvalues of { }, ,z z zP L S  the indicated values, then we can find solutions 

such that zP kψ ψ=  , zL mψ ψ=   and z sS mψ ψ=  .  Angular momentum around an 
axis always comes in integer values, so m is an integer, and the z-component of spin has 
eigenvalues correspond to 1

2sm = ± . However, there is no restriction on k. 
 
4. A free particle has wave function at t = 0 given by ( ) 2 2, 0 Axx t Neψ −= = . 

(a) [14] Find the wave function at arbitrary time t.  You may wish to simplify a bit. 
 
 We are given the initial wave function ( ) 2

0 2
0 0, Axx t Neψ −=  where t0 = 0. We substitute it 

into the general formula and then use the given integral to help us do the integral.  The key is to 
split things up in the exponent into terms with different powers of x0. We have 



( ) ( ) ( ) ( )2
0 2

0 0 0 0 0 0 0

2
2

0 0 0

1, , ; , , exp
2 2 2

exp .
2 2 2 2

im x xmx t dx K x t x t x t N dx Ax
i t t

m im A imx imxN dx x x
i t t t t

π

π

 −
Ψ = Ψ = − 

  
  = − − +    

∫ ∫

∫

 

   

 

This is now exactly the form of the integral that is given, with A im tα = −   and imx tβ =  , 
and the last term in the exponential simply going along for the ride.  We therefore have 
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(b) [5] Show that at t = 0, the formula reduces to wave function given at t = 0. 

 
 Because we did a lot of simplification, we can see that at t = 0, the formula simplifies to  

( ) 2
2

2, 0 exp .
2
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(c) [6] Find the probability density as a function of x at all times t. For full credit, 

simplify your answer as much as possible and make sure the result is real. 
 
 The probability density is *ΨΨ , which is 
 

( ) ( )
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This is manifestly real. 
 
 



5. Twelve (12) non-interacting identical particles with spin are all in a 2D harmonic 
oscillator with angular frequency ω, so the states would be labeled something like 

, ,x yn n χ . 
(a) [4] What is the energy of a single particle in an arbitrary state of this type? 

 
 This is pretty trivial; the energy of a single particle for the harmonic oscillator states will 
just be ( ) ( ) ( )1 1

2 2 1x y x yE n n n nω ω ω= + + + = + +   .  It is independent of spin. 
 

(b) [5] If the particles have spin 0, would they be bosons or fermions?  Which state(s) 
would be occupied in the ground state? What would be the ground state energy? 

 
 Spin 0 particles are bosons, which do not need to satisfy the Pauli exclusion principle.  
Hence they will all pile into the ground state nx = ny = 0.  Since this particle has no spin, you 
don’t need to specify the spin state, so the only occupied states are { }0,0 . These each have an 
energy of ω , so the total energy is 12E ω=  . 
 

(c) [8] If the particles have spin 1
2 , would they be bosons or fermions?  Which state(s) 

would be occupied in the ground state? What would be the ground state energy?  
 
 These are fermions, and because they are spin 1

2 , they can take on the values 1
2sm = ± .  

We normally abbreviate this as simply ± .  Noting that we get two states for each pair nx, ny, we 
realize that we need to fill up six nx, ny pairs, choosing them so their sum is as small as possible. 
The lowest energy states will be { }0,0, , 1,0, , 0,1, , 2,0, , 1,1, , 0, 2,± ± ± ± ± ± .  The first 
two particles will have energy ω  each, the next four will have energy 2 ω , and the last six 
will have energy 3 ω , so the total energy will be 

( ) ( ) ( )2 4 2 6 3 28 .E ω ω ω ω= + + =     

 
(d) [8] If the particles have spin 3

2 , would they be bosons or fermions?  Which state(s) 
would be occupied in the ground state? What would be the ground state energy?  

 
 Again these are fermions, and because they are spin 3

2 , they can take on the values 
3 31 1
2 2 2 2, , ,sm = − − .  Noting that we get four states for each pair nx, ny, we realize that we need to 

fill up three nx, ny pairs, choosing them so their sum is as small as possible. The lowest energy 
states will be { }0,0, , 1,0, , 0,1,s s sm m m , where ms takes on the four indicated values.  The 
first four particles have energy ω  and the other eight have energy 2 ω , so the total energy is 

( ) ( )4 8 2 20 .E ω ω ω= + =    

 



6. A spin ½-particle is in one of two states, given by  
11

2 16 i±

 
Ψ =  ± 

, with equal 

probability. 
(a) [8] Find the state operator ρ . As a check, find its trace. 
 

 The state operator is given by 

( ) ( )
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The trace is ( ) 51
6 6Tr 1ρ = + = , as it must. 

 
(b) [9] Find the expectation value of all three spin operators 1
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 We use the formula ( )TrA Aρ= , which gives us 
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(c) [8] The Hamiltonian is given by ( )z yH S Sω= − .  Prove or disprove that 0d dtρ = . 
 

 We use the formula given,  

[ ] 1 0 0 1 21 , , ,
0 1 0 2 512
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Since the time derivative is zero, it doesn’t change. 
 
 



Possibly Useful Formulas 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Possibly Useful Integral:     
2 22 22y ye dy eα β β απ α
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Radial Wave Equation 
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Hydrogen Wave Functions 
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 Spherical Harmonics 
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Free Propagator: 
( ) ( ) ( )0 0 0 0 0, , ; , ,x t dx K x t x t x tΨ = Ψ∫  

( ) ( )
( )
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State Operator  
i i i

i
fρ ψ ψ=∑  

( )TrA Aρ=  

[ ],di H
dt
ρ ρ=  


