
ar
X

iv
:s

ub
m

it/
06

05
62

0
 [

m
at

h.
N

A
]

 7
 D

ec
 2

01
2

MSS: MATLAB SOFTWARE FOR L-BFGS TRUST-REGION

SUBPROBLEMS FOR LARGE-SCALE OPTIMIZATION

JENNIFER B. ERWAY AND ROUMMEL F. MARCIA

Abstract. A MATLAB implementation of the Moré-Sorensen sequential (MSS) method
is presented. The MSS method computes the minimizer of a quadratic function defined by
a limited-memory BFGS matrix subject to a two-norm trust-region constraint. This solver
is an adaptation of the Moré-Sorensen direct method into an L-BFGS setting for large-scale
optimization. The MSS method makes use of a recently proposed stable fast direct method
for solving large shifted BFGS systems of equations [9, 8]. This MATLAB implementation
is a matrix-free iterative method for large-scale optimization. Numerical experiments show
that the MSS method is able to compute solutions to high accuracy.

1. Introduction

In this paper we describe a MATLAB implementation for minimizing a quadratic function
defined by a limited-memory BFGS (L-BFGS) matrix subject to a two-norm constraint, i.e.,
for a given xk,

minimize
p∈ℜn

Q(p) △
= gTp+

1

2
pTBp subject to ‖p‖2 ≤ δ, (1)

where g △
= ∇f(xk), B is an L-BFGS approximation to ∇2f(xk), and δ is a given positive

constant. Approximately solving (1) is of interest to the optimization community, as it is
the computational bottleneck of trust-region methods for large-scale optimization. Generally
speaking, there is a trade-off in computational cost per subproblem and the number of
overall trust-region iterations (i.e., function and gradient evaluations): The more accurate
the subproblem solver, the fewer overall iterations required. Solvers that reduce the overall
number of function and gradient evaluations are of particular interest when function (or
gradient) evaluations are time-consuming, e.g., simulation-based optimization. This paper
presents an algorithm to solve (1) to any user-defined accuracy.

The earliest quasi-Newton methods to solve (1) in a trust-region context were designed for
symmetric positive-definite Hessian approximations. These methods used the trust region
only to restrict the length of the step (see, e.g., [18, 17, 7, 11]) and did not seek to solve

Date: December 7, 2012.
Key words and phrases. Large-scale unconstrained optimization, trust-region methods, limited-memory

quasi-Newton methods, L-BFGS.
J. B. Erway was supported in part by National Science Foundation grant DMS-0811106. R. F. Marcia

was supported in part by National Science Foundation grant DMS-0965711.
1

http://arxiv.org/submit/0605620/pdf

2 JENNIFER B. ERWAY AND ROUMMEL F. MARCIA

(1) to high accuracy. In [18, 17], Powell proposes a quasi-Newton trust-region method that
accepts the Cauchy point pc, the solution of the minimization problem

minimize
p,α

{Q(p) : p = −αg} ,

as the approximate solution of (1) whenever ‖pc‖2 > δ. If the Cauchy point satisfies
‖pc‖2 ≤ δ, Powell computes the quasi-Newton step pqN

△
= −Bg, and if the quasi-Newton

satisfies ‖pqN‖2 ≤ δ, this step is taken as the approximate solution of (1). If this second
test is not satisfied, the approximate solution of the minimization problem is chosen to be a
convex combination of the Cauchy step and the quasi-Newton step that lies on the bound-
ary ‖p‖2 = δ . This method is often referred to as a “dogleg” strategy. In [7], Dennis and
Mei propose two modifications: They exchange the order of Powell’s tests of the Cauchy
step and the quasi-Newton step, and they modify the dogleg strategy into a double-dogleg
strategy that biases the approximate minimizer more in the favor of the quasi-Newton direc-
tion. In [11], Kauffman extends the double-dogleg strategy to a limited-memory framework.
These methods require products with both B and B−1, which are accomplished by updating
a matrix factorization at each step. However, these methods only approximately solve (1);
when the solution lies on the boundary, none of these methods seek to solve the minimization
problem to high accuracy.

Methods to solve (1) to high accuracy are often based on optimality conditions given in
the following theorem (see, e.g., Gay [10], Sorensen [19], Moré and Sorensen [14] or Conn,
Gould and Toint [5]):

Theorem 1. Let δ be a positive constant. A vector p∗ is a global solution of the trust-region
subproblem (1) if and only if ‖p∗‖2 ≤ δ and there exists a unique σ∗ ≥ 0 such that B + σ∗I
is positive semidefinite and

(B + σ∗I)p∗ = −g and σ∗(δ − ‖p∗‖2) = 0. (2)

Moreover, if B + σ∗I is positive definite, then the global minimizer is unique.

The Moré-Sorensen algorithm [14] seeks (p∗, σ∗) that satisfy the optimality conditions (2)
by trading off between updating p and σ. That is, each iteration, the method updates p
(fixing σ) by solving the linear system (B + σI)p = −g using the Cholesky factorization of
the B + σI; then, σ is updated using a safeguarded Newton method to find a root of

φ(σ) △
=

1

‖p(σ)‖2
− 1

δ
. (3)

The Moré-Sorensen direct method is arguably the best direct method for solving the trust-
region subproblem; in fact, the accuracy of each solve can be specified by the user. While
this method is practical for smaller-sized problems, in large-scale optimization it is too
computationally expensive to compute and store Cholesky factorizations for unstructured
Hessians.

In Burke et al. [3], the authors propose an adaption of Moré-Sorensen method to the
limited-memory BFGS setting. They begin by computing the quasi-Newton step pqN

△
= −Bg.

THE MSS METHOD 3

If pqN satisfies the two-norm inequality constraint, the problem is solved; otherwise, Burke
et al. find a solution ‖p‖2 that lies on the boundary of the trust region using More-Sorensen’s
method by computing a pair (p(σ), σ) such that

(B + σI)p(σ) = −g and σ(δ − ‖p(σ)‖2) = 0. (4)

similar to the original direct method. The solution of the second equation in (4) is computed
using two Choleksy factorizations of M ×M matrices, where M is the number of limited-
memory updates. The method is derived using the Sherman-Morrison-Woodbury formula.
While this technique is able to exploit properties of L-BFGS updates, there are potential
instability issues related to their proposed use of the Sherman-Morrison-Woodbury that are
not addressed.

Lu and Monteiro [13] also explore a Moré-Sorensen method implementation when B has
special structure; namely, B = D + V EV T , where D and E are positive diagonal matri-
ces, and V has a small number of columns. Their approach uses the Sherman-Morrison-
Woodbury formula to replace solves with (B + σI) with solves with an M × M system
composed of a diagonal plus a low rank matrix. Thus, this method is able to avoid comput-
ing Choleksy factorizations. Like with [3], there are potential stability issues that are not
addressed regarding inverting the M ×M matrix.

Finally, Apostolopoulou et al. [2, 1] derive a closed-form expression for (B + σI)−1 to
solve the first equation in (4). The authors are able to explicitly compute the eigenvalues of
B, provided M = 1 [2, 1] or M = 2 [1]. While their formula avoids potential instabilities
associated the Sherman-Morrison-Woodbury formula, their formula is restricted to the case
when the number of updates is at most two.

1.1. Overview of the proposed methods. In this paper, we describe a new adaptation of
the Moré-Sorensen solver into a large-scale L-BFGS setting. The proposed method, called the
Moré-Sorensen sequential (MSS) method, is able to exploit the structure of BFGS matrices to
solve the shifted L-BFGS system in (2) using a fast direct recursion method that the authors
originally proposed in [9]. (This recursion was later proven to be stable in [8].) The MSS

method is able to solve (1) to any prescribed accuracy.
The paper is organized in five sections. In Section 2 we review L-BFGS quasi-Newton

methods and introduce notation that will be used for the duration of this paper. Section 4
includes numerical results comparing the Moré-Sorensen method and the MSS method. Fi-
nally, Section 5 includes some concluding remarks and observations.

1.2. Notation and Glossary. Unless explicitly indicated, ‖ · ‖ denotes the vector two-
norm or its subordinate matrix norm. In this paper, all methods use L-BFGS updates and
we assume they are selected to ensure the quasi-Newton matrices remain sufficiently positive
definite.

2. Background

In this section, we begin with an overview of the L-BFGS quasi-Newton matrices described
by Nocedal [15], defining notation that will be used throughout the paper.

4 JENNIFER B. ERWAY AND ROUMMEL F. MARCIA

The L-BFGS quasi-Newton method generates a sequence of positive-definite matrices {Bj}
from a sequence of vectors {yj} and {sj} defined as

yj = ∇f(xj+1)− f(xj) and sj = xx+1 − xj ,

where j = 0, . . .m − 1 where m ≤ M , and M is the maximum number of allowed stored
pairs (yj, sj). This method can be viewed as the BFGS quasi-Newton method where no more
than the M most recently computed updates are stored and used to update an initial matrix
B0. The L-BFGS quasi-Newton approximation to the Hessian of f is implicitly updated as
follows:

Bm = B0 −
m−1
∑

i=0

aiai
T +

m−1
∑

i=0

bib
T
i , (5)

where

ai =
Bisi

√

sTi Bisi
, bi =

yi
√

yTi si
, B0 = γ−1

m I, (6)

and γm > 0 is a constant. In practice, γm is often defined to be γm
△
= sTm−1ym−1/‖ym−1‖2

(see, e.g., [12] or [15]). In order to maintain that the sequence {Bi} is positive definite for
i = 1, . . .m, each of the accepted pairs must satisfy yTi si > 0 for i = 0, . . . , m− 1.

Suppose that we have computed m updates (m ≤ M) and have the following updates
stored in S and Y :

S = [s0 . . . sm−1] and Y = [y0 . . . ym−1].

The matrices S and Y are updated with the most recently computed vector pair (sm, ym) as
follows:

Algorithm 2.1: Update S and Y .

if m < M ,
S ← [S sm]; Y ← [Y ym]; m← m+ 1;

else

for i = 0, . . .m− 1
si ← si+1; yi ← yi+1;

end

S ← [s0, . . . sm−1]; Y ← [y0, . . . ym−1];
end

Thus, at all times we have exactly m stored vectors with m ≤ M .
One of the advantages of using an L-BFGS quasi-Newton is that there is an efficient recur-

sion relation to compute products with B−1
m . Given a vector z, the following algorithm [15, 16]

terminates with r △
= B−1

m z:

THE MSS METHOD 5

Algorithm 2.2: Two-loop recursion to compute r = B−1
m z.

q ← z;
for k = m− 1, . . . , 0

ρk ← 1/(yTk sk);
αk ← ρks

T
k q;

q ← q − αkyk;
end

r ← B−1
0 q;

for k = 0, . . . , m− 1
β ← ρky

T
k r;

r ← r + (αk − β)sk:
end

The two-term recursion formula requires at most O(Mn) multiplications and additions.
To compute products with the L-BFGS quasi-Newton matrix, one may use the so-called
“unrolling” formula, which requires O(M2n) multiplications, or one may use a compact
matrix representation of the L-BFGS that can be used to compute products with the L-

BFGS quasi-Newton matrix, which requires O(Mn) multiplications (see, e.g., [16]). Further
details on L-BFGS updates can found in [16]; further background on the BFGS updates can
be found in [6].

Without loss of generality, for the duration of the paper we assume that B is a symmetric
positive-definite quasi-Newton matrix formed using m (m ≤M) L-BFGS updates.

3. The MSS method

In this section, we present the MSS method to solve the constrained optimization problem
(1). We begin by considering the Moré-Sorensen direct method proposed in [14].

The Moré-Sorensen direct method seeks a pair (p, σ) that satisfy the optimality conditions
(2) by alternating between updating p and σ. In the case that the B is positive definite (as
in L-BFGS matrices), the method simplifies to Algorithm 3.1 [14].

Algorithm 3.1: Moré-Sorensen Method.

σ ← 0; p← −B−1g;
if ‖p‖ ≤ δ

return;
else

while not converged do

Factor B + σI = RTR;
Solve RTRp = −g;
Solve RT q = p;

σ ← σ + ‖p‖2

‖q‖2
‖p‖−δ

δ
;

6 JENNIFER B. ERWAY AND ROUMMEL F. MARCIA

end do

end

The update to σ in Algorithm 3.1 can be shown to be Newton’s method applied (3).
(Since B is positive definite, a safeguarded Newton’s method unnecessary.) Convergence
is predicated on solving the optimality conditions (2) to a prescribed accuracy. The only
difficulty in implementing the Moré-Sorensen method in a large-scale setting is the shifted
solve (B + σI)p = −g.

One method to directly solve systems of the form (B + σI)x = y is to view the system
matrix as the sum of σI and rank-one L-BFGS updates to an initial diagonal matrix B0. It
is important distinguish between applying rank-one L-BFGS updates to B0+σI and viewing
the system matrix as the sum of rank-one updates to B0 + σI. To compute (B + σI)−1y,
one cannot simply substitute B0+σI in for B0 in Algorithm (2.2). (For a discussion on this,
see [9]). In [9], Erway and Marcia present a stable fast direct method for solving L-BFGS

systems that are shifted by a constant diagonal matrix (stability is shown in [8]). Specifically,
it is shown that products with (B + σI)−1 can be computed provided γσ is bounded away
from zero, where B0

△
= γ−1I. The following theorem is found in [9]:

Theorem 2. Let γ > 0 and σ ≥ 0. Suppose G = (γ−1 + σ)I, and let H =
∑2m−1

i=0 Ei, where

E0 = −a0aT0 , E1 = b0b
T
0 , . . . , E2m−2 = −am−1a

T
m−1, E2m−1 = bm−1b

T
m−1,

with {ai} and {bi} are defined as in (6). Further, define Cm+1 = G+E0+ · · ·+Em. If there
exists some ǫ > 0 such that γσ > ǫ, then B + σI = G+H, and (B + σI)−1 is given by

(B + σI)−1 = C−1
2m−1 − v2m−1C

−1
2m−1E2m−1C

−1
2m−1

where
C−1

i+1 = C−1
i − viC

−1
i EiC

−1
i , i = 0, . . . , 2m− 1,

and

vi =
1

1 + trace
(

C−1
i Ei

) .

Proof. See [9]. �

This theorem is the basis for the following algorithm derived in [9] to compute products
with (B + σI)−1. The algorithm was shown to be stable in [8].

Algorithm 3.2: Recursion to compute x = (B + σI)−1y.
x← (γ−1 + σ)−1y;
for k = 0, . . . , 2m− 1

if k even
c← ak/2;

else

c← b(k−1)/2;

THE MSS METHOD 7

end

rk ← (γ−1 + σ)−1c;
for i = 0, . . . , k − 1

rk ← rk + (−1)ivi(rTi c)ri;
end

vk ← 1/(1 + (−1)k+1rTk c);
x← x+ (−1)kvk(rTk y)rk;

end

It is important to note that {ai} and {bi} need to be precomputed. Algorithm 3.2 requires
at most O(M2n). Operations with C0 = B0 + σI and C1 can be easily computed with
minimal extra expense since C−1

0 is a diagonal matrix. It is generally known that M may
be kept small (for example, Byrd et al. [4] suggest M ∈ [3, 7]). When M2 ≪ n, the extra
storage requirements and computations are affordable.

3.1. Handling small σ. In this section we discuss the case of solving (B + σI)p = −g for
small σ. For stability, it is important to maintain γσ > ǫσ for a small positive ǫσ. Thus,
in order to use Algorithm 3.2, we require that both γ >

√
ǫσ and σ >

√
ǫσ. The first

requirement is easily met by thresholding γ, i.e., γ ← min{√ǫσ, γ}. (Recall that yTi si > 0
for each i = 0, . . .m − 1, and thus, γ > 0.) When σ ≤ √ǫσ, we set σ = 0 and use the
two-loop recursion (Algorithm 2.2) to solve an unshifted L-BFGS system.

3.2. The algorithm. The MSS method adapts the Moré-Sorensen method into an L-BFGS

setting by solving (B+σI)p = −g using a recursion method instead of a Cholesky factoriza-
tion. When σ is sufficiently large, the recently proposed recursion algorithm (Algorithm 3.2)
is used to update s; otherwise, σ ≈ 0 and the two-loop recursion (Algorithm 2.2) is used.
Also, note that the Moré-Sorensen method updates σ using Newton’s method applied to (3),
i.e.,

σ ← σ − φ(p)/φ′(p). (7)

In Algorithm 3.1 this update is written in terms of the Cholesky factors. In the MSS algo-
rithm, Cholesky factors are unavailable, and thus, the update to σ is performed by explicitly
computing the Newton step (7). For details on this update see [5].

The MSS method is summarized in Algorithm 3.3.

Algorithm 3.3: MSS Method.

Specify γ >
√
ǫσ where 0 < ǫσ ≪ 1;

σ ← 0; p← −B−1g;
if ‖p‖ ≤ δ

return;
else

while not converged do

φ(p)← 1/‖p‖ − 1/δ;

8 JENNIFER B. ERWAY AND ROUMMEL F. MARCIA

if σ >
√
ǫσ

Compute p̂ such that (B + σ)p̂ = −p using Algorithm 3.2;
else

Compute p̂ such that Bp̂ = −p using Algorithm 2.2;
end

φ′(p)← −(pT p̂)/‖p‖3;
σ ← σ − φ(p)/φ′(p);
if σ >

√
ǫσ

Compute p such that (B + σ)p = −g using Algorithm 3.2;
else

Compute p such that Bp = −g using Algorithm 2.2;
end

end

end

3.3. Stopping criteria. When the solution to (1) lies on the constraint boundary ‖p‖ = δ,
it is reasonable to accept p when ‖p‖ is sufficiently close to δ. Thus, for a fixed τ ≪ 1, the
MSS method tests

|‖p‖ − δ| ≤ τδ, (8)

for convergence on the constraint boundary. This test may also be used in addition to the
test ‖p‖ ≤ δ for the quasi-Newton step pqN = −B−1g, making the condition

‖p‖ ≤ δ or |‖p‖ − δ| ≤ τδ. (9)

4. Numerical Results

In this section, we test the accuracy of the proposed Moré-Sorensen sequential (MSS)
method. Numerical results were obtained using MATLAB implementations of the MSS and
Moré-Sorensen methods. For all experiments, vector pairs {(si, yi)}, i = 0, . . .m − 1, (m <
M), were randomly generated by computing two m× 1 vectors S and Y such that whenever
sTi yi < 0, the sign of si was flipped, i.e., si ← −si. Thus, the sequence of L-BFGS matrices
were positive definite. For each experiment, g and δ were also randomly generated. The
number of limited-memory updates m was set to 5. Finally, the lower bound on γσ was
taken to be ǫσ

△
= ǫ, where ǫ is machine precision.

For the numerical experiments, the stopping criteria (8) and (9) were used with

τ △
= min{‖g‖ ∗ 10−5,

√
ǫ},

where ǫ is machine precision. For each problem, no more than 500 iterations were allowed
for either MSS method and Moré-Sorensen method.

In the first set of experiments, random problems of size n=100, 500, 1000, 2000, and 5000
were generated. The results of both solvers are presented in Table 1. For each problem,

THE MSS METHOD 9

Table 1. Comparison of results from the Moré-Sorensen (MS) method and
the Moré-Sorensen Sequential (MSS) method on small problems.

n δ γ ‖g‖ τ MS error MSS error
100 6.83e-01 1.04e-01 9.79e+00 1.49e-08 6.17e-14 2.21e-14

500 6.98e-02 3.77e-02 2.28e+01 1.49e-08 3.57e-14 1.69e-14

1000 4.12e-01 2.82e-02 3.23e+01 1.49e-08 4.54e-07 1.62e-07

2500 3.86e-01 2.91e-02 4.99e+01 1.49e-08 4.37e-07 1.85e-07

5000 1.93e-01 5.41e-03 7.18e+01 1.49e-08 1.04e-07 3.49e-08

Table 2. Moré-Sorensen Sequential (MSS) method on large problems.

n δ γ ‖g‖ τ MSS error
10000 9.03e-01 1.96e-02 1.00e+02 1.49e-08 1.30e-09

50000 9.37e-01 2.37e-03 2.22e+02 1.49e-08 1.83e-11

100000 5.34e-01 3.74e-03 3.15e+02 1.49e-08 1.24e-07

500000 5.00e-01 2.01e-03 7.06e+02 1.49e-08 2.57e-12

1000000 6.35e-01 7.08e-04 1.00e+03 1.49e-08 1.39e-12

δ, γ, ‖g‖, and τ are given. The reported errors for each problem is the sum of the errors in
the optimality conditions, i.e.,

error = ‖(B + σ∗I)p+ g‖+ |σ∗(δ − ‖p∗‖)| . (10)

In addition to storage limitations in memory and because of the time requirements needed
to compute Cholesky factorizations, the Moré-Sorensen method was not tested on problems
with n > 5000. Both methods were able to solve all constrained optimization problems to
the required tolerance. (Note that convergence depends on τ , but the sum of the errors in
the optimality conditions do not have to be less than τ .)

Larger values of n were chosen for the second set of experiments. We tested the MSS

method on five random problems of large size and computed the error as in (10). Table
2 reports these results. In all cases, the MSS method was able to solve the optimization
problem to the required tolerance.

5. Concluding Remarks

In this paper, we have presented a MATLAB implementation of the MSS algorithm that
is able to solve problems of the form (1). This solver is stable and numerical results confirm
that the method can compute solutions to any prescribed accuracy. Future research includes
implementing the MSS method in a trust-region algorithm for large-scale optimization.

References

[1] M. S. Apostolopoulou, D. G. Sotiropoulos, C. A. Botsaris, and P. E. Pintelas. A practical method for
solving large-scale TRS. Optimization Letters, 5:207–227, 2011.

10 JENNIFER B. ERWAY AND ROUMMEL F. MARCIA

[2] M. S. Apostolopoulou, D. G. Sotiropoulos, and P. Pintelas. Solving the quadratic trust-region subprob-
lem in a low-memory bfgs framework. Optimization Methods Software, 23(5):651–674, Oct. 2008.

[3] J. V. Burke, A. Wiegmann, and L. Xu. Limited memory bfgs updating in a trust-region framework.
Technical report, University of Washington, 1996.

[4] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices and their use
in limited-memory methods. Math. Program., 63:129–156, 1994.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000.

[6] J. E. Dennis, Jr. and R. B. Schnabel. Numerical methods for unconstrained optimization and nonlinear

equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Corrected
reprint of the 1983 original.

[7] J. E. Dennis Jr. and H. H. Mei. Two new unconstrained optimization algorithms which use function
and gradient values. J. Optim. Theory Appl., 28:453–482, 1979.

[8] J. B. Erway, V. Jain, and R. F. Marcia. Shifted l-bfgs systems. Technical Report 2012-6, Wake Forest
University, 2012.

[9] J. B. Erway and R. F. Marcia. Limited-memory bfgs systems with diagonal updates. Linear Algebra

and its Applications, 437(1):333 – 344, 2012.
[10] D. M. Gay. Computing optimal locally constrained steps. SIAM J. Sci. Statist. Comput., 2(2):186–197,

1981.
[11] L. Kaufman. Reduced storage, quasi-Newton trust region approaches to function optimization. SIAM

J. Optim., 10(1):56–69, 1999.
[12] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Math.

Program., 45:503–528, 1989.
[13] Z. Lu and R. D. C. Monteiro. A modified nearly exact method for solving low-rank trust region sub-

problem. Math. Program., 109(2):385–411, Jan. 2007.
[14] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. and Statist. Comput.,

4:553–572, 1983.
[15] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comput., 35:773–782, 1980.
[16] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, second edition, 2006.
[17] M. J. D. Powell. A fortran subroutine for solving systems of nonlinear algebraic equations. In P. Rabi-

nowitz, editor, Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach, 1970.
[18] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor, Numerical Methods

for Nonlinear Algebraic Equations, pages 87–114. Gordon and Breach, 1970.
[19] D. C. Sorensen. Newton’s method with a model trust region modification. SIAM J. Numer. Anal.,

19(2):409–426, 1982.

E-mail address : erwayjb@wfu.edu

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109

E-mail address : rmarcia@ucmerced.edu

Appied Mathematics, University of California, Merced, Merced, CA 95343

	1. Introduction
	1.1. Overview of the proposed methods
	1.2. Notation and Glossary

	2. Background
	3. The MSS method
	3.1. Handling small
	3.2. The algorithm
	3.3. Stopping criteria

	4. Numerical Results
	5. Concluding Remarks
	References

