Due Date: September 03, 2021

1. A communicable disease from which infectives do not recover may be modeled by the pair of differential equations

$$
\begin{aligned}
\dot{S} & =-\beta S I \\
\dot{I} & =\beta S I .
\end{aligned}
$$

Show that in a population of fixed size N, such a disease will eventually spread to the entire population, i.e. $\lim _{t \rightarrow \infty} I(t)=N$.
2. If a fraction λ of the population susceptible to a disease that provides immunity against reinfection moves out of the region of an epidemic, the situation may be modeled by a system

$$
\begin{aligned}
\dot{S} & =-\beta S I-\lambda S, \\
\dot{I} & =\beta S I-\alpha I .
\end{aligned}
$$

Show that both S and I approach zero as $t \rightarrow \infty$.
3. Consider a disease spread by carriers who transmit the disease without exhibiting symptoms themselves. Let $C(t)$ be the number of carriers and suppose that the carriers are identified and isolated from contact with others at a constant per captia rate α, so that $\dot{C}=-\alpha C$. The rate at which susceptibles become infected is proportional to the number of carriers and to the number of susceptibles, so that $\dot{S}=-\beta S C$. Let C_{0} and S_{0} be the numbers of carriers and susceptibles, respectively, at time $t=0$.
(a) Determine the number of carriers at time t from the equation for C.
(b) Substitute the solution to part (a) into the equation for S and determine the number of susceptibles at time t.
(c) Find $\lim _{t \rightarrow \infty} S(t)$, the number of members of the population who escape the disease.
4. Consider the SIR model with births and deaths and with vaccination in place of recovery:

$$
\begin{aligned}
\dot{S} & =\mu N-\frac{\beta}{N} S I-(\mu+\phi) S \\
\dot{I} & =\frac{\beta}{N} S I-(\mu+\gamma) I \\
\dot{V} & =\gamma I+\phi S-\mu V
\end{aligned}
$$

where N is the populations size, $\mu, \beta, \gamma>0$, and $\phi \geq 0$.
(a) Explain in practical terms what the constants μ, β, γ, and ϕ represent physically.
(b) Show that $\frac{d N}{d t}=0$. What does this result imply?
(c) Discuss why it is enough to study the first two equations.
(d) Determine under what conditions the number of infected individuals is growing in time at time $t=0$ in the limit $S_{0} \rightarrow N$. That is, determine under what conditions $\dot{I}(0)>0$ in the limit $S_{0} \rightarrow N$. Use this information to determine a quantity $R_{0}(\phi)$ such that if $R_{0}(\phi)>1$ the number of infections is initially growing in time in the limit $S_{0} \rightarrow N$.
(e) Plot $R_{0}(\phi)$ and interpret your results in practical terms.

Home wack \＃${ }^{2}$
非1，A communicable disease from which infactives do not recovever may be modeled by

$$
\begin{aligned}
& \dot{S}=-\beta S I \\
& \dot{I}=\beta S I
\end{aligned}
$$

Show that in a population of fixed size $N, \lim _{t \rightarrow \infty} I(t)=N$ ．
Solution：
Since $\dot{S}+\dot{I}=0$ it follows that $N=S+I=S_{0}+I$ is constant in time．Consequently

$$
I=\beta(N-I) I . \quad(*)
$$

Therefore，$\dot{I}(0)=\beta S . I_{0}>0$ and this I is monotone increasing at $t=0$ ．Moreover，by（＊）it follows that I is monotone incrcasiy for all $0<I<N$ ，Since $I_{1}^{*}=N$ is a solution it follows from exisanice and uniqueness that $I(t)$ is bounded above b ，N．Therefore，by the monntere converging theeern there exists I_{2}^{*} soon that $\operatorname{lu}_{t \rightarrow \infty} I(t)=I_{2}^{*}$ ．However，since $\lim _{t \rightarrow \infty} I(t)=I_{2}^{*}$ and $I(t)$

$$
\begin{aligned}
O=\lim _{t \rightarrow \infty} \dot{I}(t) & \left.=\lim _{t \rightarrow \infty} \beta(N-I(t))\right)^{+\rightarrow \infty}(t) \\
& =\beta\left(N-I_{2}^{*}\right) I_{2}^{*} .
\end{aligned}
$$

Theretan，

$$
\lim _{t \rightarrow \infty} I(t)=\Gamma_{2}^{*}=N .
$$

\#2.
If a fraction λ of the population susceptible to a disease that provides reinfection moves out of the region of an epidemic. the situation may be modeled by

$$
\begin{aligned}
& \dot{S}=-\beta S I-\lambda S, \\
& I=\beta S I-\alpha I .
\end{aligned}
$$

Show that both S and I approach zero as $t \rightarrow \infty$.
Solution:
Since $S^{2}=0$ is a solution and $\dot{S}>0$ if $S>0$ it follows from similar arguments in \#l that $\lim _{t \rightarrow \infty} S(t)=0$. Now,

$$
\dot{I}=I(\beta s-\alpha)
$$

Consequently, since $\lim _{t \rightarrow \infty} S(t)=0$ it follows thane exists t_{1}^{*} such that $t>t_{1}^{*}$ implies $S(t)<\alpha / \beta$ and thus I is monotone decrcasi) for $t>t_{1}^{2}$. Again $I=0$ is a solution and this from simian arguenomes in \#1 it follows that

$$
\lim _{t \rightarrow \infty} I(t)=0 .
$$

\#3.
Consider a disease spored by carriers who transmit the disease without exhibition symptoms themsehes. The model is given by:

$$
\begin{aligned}
& \dot{C}=-\alpha C \\
& \dot{S}=-\beta S C .
\end{aligned}
$$

(a) Determine the numbre of carriers at time t.
(b). Determine the number of susceptibles at time t.
(c) Find $\lim _{t \rightarrow \infty} S(t)$.

Solution:
(a). This is a lingo equation with solution

$$
C(t)=C_{0} e^{-\alpha t} .
$$

(b). Thereto de,

$$
\begin{aligned}
& \dot{S}=-\beta S C_{0} e^{-\alpha t} \\
\Rightarrow & \int_{S_{0}}^{s}-\frac{1}{\beta S} d S=\int_{0}^{t} C_{0} e^{-\alpha t} d t \\
\Rightarrow & -\frac{1}{\beta} \ln \left(\frac{S}{S_{0}}\right)=\frac{C_{0}}{-\alpha}\left(e^{-\alpha t}-1\right) \\
\Rightarrow & h\left(\frac{S}{S_{0}}\right)=C_{0} \frac{\beta}{\alpha}\left(e^{-\alpha t}-1\right) \\
\Rightarrow & \delta(t)=S_{0} \exp \left(\frac{C_{0} \beta}{\alpha}\left(e^{-\alpha t}-1\right)\right)
\end{aligned}
$$

(c). Computing it follows that!

$$
\lim _{t \rightarrow \infty} \delta(t)=S_{0} \exp \left(-\frac{C_{0} \beta}{\alpha}\right)
$$

\#4
Consider the SIR model with births and deaths and with Vaccination in place of recovery:

$$
\begin{aligned}
& \dot{S}=\mu N-B / N \delta I-(\omega+\phi) S \\
& \dot{I}=\beta / N S I-(\omega+\gamma) I \\
& \dot{V}=\gamma I+\phi \delta-\mu V
\end{aligned}
$$

Where N is the population size.
 physically.
(b) Show that $\frac{d N}{d t}=0$. What does this result imply.
(c) Discos why it is eneogh to stay the first two equations.
(d). Calculate R_{0} for this problem.

Solution:
(a). N measure the birth rate. Note, this model assumes that the death rate is also μ. β is the rate of infection white $\gamma, \$$ represent vaccination rates of the infected and susceptible Populations respectively,
(b). $S+I+\dot{V}=\mu N-\mu S-\mu I-\mu V=\mu N-\mu N=0$.
(c). Since V is decoupled from S and I it follows that S and I can be soluad iadegendanty of \dot{V}.
(d) In the limit $S_{0} \rightarrow N$ it follows that

$$
\dot{I}(0)=I(0)(\beta-\omega-\gamma)
$$

and this the condition for an epidemic is

$$
\Rightarrow \begin{aligned}
& \beta-\mu-\gamma>0 \\
& R_{0}=\frac{\beta}{N+\gamma}>1
\end{aligned}
$$

