MST 383/683

Homework \#4

Due Date: October 152021

1. Consider an SIS network model with adjacency matrix A and where each node has a status $X_{i}(t) \in\{0,1\}$ denoting whether node i is susceptible or infected at time t. Suppose further that the transition probabilities for the status of each node are given by:

$$
\begin{aligned}
& P\left(X_{i}(t+\Delta t)=1 \mid X_{i}(t)=0\right)=\beta \Delta t \sum_{j=1}^{n} A_{i j} X_{j}(t) \\
& P\left(X_{i}(t+\Delta t)=0 \mid X_{i}(t)=0\right)=1-\beta \Delta t \sum_{j=1}^{n} A_{i j} X_{j}(t) \\
& P\left(X_{i}(t+\Delta t)=0 \mid X_{i}(t)=1\right)=\alpha \Delta t \\
& P\left(X_{i}(t+\Delta t)=1 \mid X_{i}(t)=1\right)=1-\alpha \Delta t
\end{aligned}
$$

(a) Prove that $[S S](t)+[S I](t)=\left\langle k_{S}(t)\right\rangle[S](t)$ and $[S I]+[I I]=\left\langle k_{I}(t)\right\rangle[I](t)$, where $\left\langle k_{S}(t)\right\rangle$ and $\left\langle k_{I}(t)\right\rangle$ denote the average degree of the susceptible and infected nodes.
(b) Prove that $[S S I]+[I S I]=\left(\left\langle k_{S}(t)\right\rangle-1\right)[S I]$.
2. Consider an $S I R$ network model with adjacency matrix A and where each node has a status $X_{i}(t) \in\{0,1,2\}$ denoting whether node i is susceptible, infected, or recovered at time t. Suppose further that the transition probabilities for the status of each node are given by:

$$
\begin{aligned}
& P\left(X_{i}(t+\Delta t)=0 \mid X_{i}(t)=0\right)=1-\beta \Delta t \sum_{j=1}^{n} A_{i j} X_{j}(t) \nmid X_{j}=13 \\
& P\left(X_{i}(t+\Delta t)=1 \mid X_{i}(t)=0\right)=\beta \Delta t \sum_{j=1}^{n} A_{i j} X_{j}(t) \notin X_{j}=13 \\
& P\left(X_{i}(t+\Delta t)=2 \mid X_{i}(t)=0\right)=0 \\
& P\left(X_{i}(t+\Delta t)=0 \mid X_{i}(t)=1\right)=0 \\
& P\left(X_{i}(t+\Delta t)=1 \mid X_{i}(t)=1\right)=1-\alpha \Delta t \\
& P\left(X_{i}(t+\Delta t)=2 \mid X_{i}(t)=1\right)=\alpha \Delta t \\
& P\left(X_{i}(t+\Delta t)=0 \mid X_{i}(t)=2\right)=0 \\
& P\left(X_{i}(t+\Delta t)=1 \mid X_{i}(t)=2\right)=0 \\
& P\left(X_{i}(t+\Delta t)=2 \mid X_{i}(t)=2\right)=1
\end{aligned}
$$

Following the derivation we did for the SIS network model, show that

$$
\begin{aligned}
{[\dot{S}] } & =-\beta[S I] \\
{[\dot{I}] } & =\beta[S I]-\alpha[I] \\
{[\dot{R}] } & =\alpha[I]
\end{aligned}
$$

Note, you just need to reproduce what we did in class in detail.
3. The differential equations for the dynamics of the nodes and edges for the $S I S$ model are given by

$$
\begin{aligned}
{[\dot{S}] } & =-\beta[S I]+\alpha[I] \\
{[\dot{I}] } & =\beta[S I]-\alpha[I] \\
{[\dot{S S}] } & =-2 \beta[S S I]+2 \alpha[S I] \\
{[\dot{S I}] } & =\beta([S S I]-[I S I]-[S I]) \\
{[\dot{I I}] } & =2 \beta([I S I]+[I S])-2 \alpha[I I]
\end{aligned}
$$

(a) Using the following approximation:

$$
[A B C] \approx \frac{\langle k\rangle-1}{\langle k\rangle} \frac{[A B][B C]}{[B]}
$$

derive a closed system of equations for the dynamics of the nodes and edges.
(b) Show that $[S]+[I]$ and $[S S]+2[S I]+[I I]$ are conserved quantities and thus

$$
\begin{aligned}
n & =[S](0)+[I](0) \\
n\langle k\rangle & =[S S](0)+2[S I](0)+[I I](0)
\end{aligned}
$$

are constant in time.
(c) Using the result of part (b), reduce the system of equations derived in part (a) to a system of three differential equations for $[S],[S S]$, and $[S I]$.
(d) Assuming further that $[S I]=\langle k\rangle[S]-[S S]$, reduce this system further to a system of two differential equations.
(e) For the system of differential equations you have derived, determine the fixed points, analyze their stability, and sketch phase portraits that illustrate all of the qualitatively different cases that occur.
(f) Calculate a dimensionless parameter \mathcal{R}_{0} such that if $\mathcal{R}_{0}>1$ the disease becomes endemic.
4. For the $S I R$ model defined in problem $\# 2$, derive differential equations for the edges:

$$
[S S],[S I],[S R],[I I],[I R],[R R]
$$

5. In this problem you will derive differential equations for an $S I S$ model in which edges can be paused. Specifically, individuals will pause connections at a rate proportional to the total number of infections. This could model a disease in which infected individuals are asymptomatic but as more infections are reported individuals remove themselves from the network.
(a) For the $S I S$ model given in problem \#3, introduce a new class of edges $\overline{S S S}], \overline{[I S]}$, and $\overline{[I I]}$ which denote paused connections. Develop a system of eight differential equations for the dynamics of $[S],[I],[S S],[S I],[I I],[S S],[S I]$ and $[I I]$ in which paused connections are introduced at rate proportional to the number of infections. Note, your equations should be conservative in the sense that in addition to $[S]+[I],[S S]+2[S I]+[I I]+$ $\overline{[S S]}+2 \overline{[S I]}+\overline{[I I]}$ is a conserved quantity.
(b) Using the same moment closure approximation defined in problem \#3(a), close this system of equations.
(c) Using the conserved quantities reduce this system of equations to a set of six differential equations.
(d) Calculate a dimensionless parameter \mathcal{R}_{0} such that if $\mathcal{R}_{0}>1$ the disease becomes endemic.

Homework \#4
\#1
Consider an SIS network model.
(a) Prove that $[S S]+[S I]=\left\langle K_{3}\right\rangle[S]$, and in addition $[S I]+[I I]=\left\langle K_{I}\right\rangle[I]$,
(b) Prove that $[S S I]+[I S I]=\left(\left\langle K_{S}\right\rangle-1\right)[5 I]$.

Solution:
(a) Note,

$$
\left\langle K_{S}\right\rangle=\frac{1}{[S]} \sum_{i=1}^{h} \sum_{j=1}^{n} P\left(I_{i}=0\right) A_{i j}
$$

Therefore,

$$
\begin{aligned}
{[S S]+[S I] } & =\sum_{i=1}^{n} \sum_{i=1}^{n} A_{i j}\left(P\left(I_{i}=0, T_{i}=0\right)+P\left(I_{i} \hat{0}, I_{j}=1\right)\right) \\
& =\sum_{i=1} A_{i j} P\left(I_{i}=0\right) \\
& =[\delta]\left\langle K_{s}\right\rangle .
\end{aligned}
$$

(b.) Note, $\left(\left\langle\mathrm{K}_{s}\right\rangle-1 d[S I]\right.$ denotes the anlage number of connections to the S node of the SI edges. Consequatly if we let $\left\langle K_{\text {sss }}^{s}\right\rangle$ dinote the average number of links to an S note which is part of an SI edge we know that

$$
\left\langle K_{s p}^{s}\right\rangle=\left(\left\langle K_{s}\right\rangle-1\right)=\frac{1}{[S I]} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} A_{i} A_{j} k P\left(I_{j}=0, I_{k}=1\right)
$$

Therefore,

$$
\begin{aligned}
{[S S I]+\left[I_{S I}\right]=} & \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} A_{i j} A_{j k}\left(P\left(I_{i}=0, I_{j}=0, I_{k}=1\right)\right. \\
& +P\left(I_{i}=1, I_{i}=0, I_{k}=1\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow[S S I]+[I S I] & =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} A_{i j} A_{j k}\left(P\left(I_{j}=0, I_{k}=1\right)\right. \\
& =[S I]\left(\left\langle k_{s}\right\rangle-1\right) .
\end{aligned}
$$

\#2.
Show that the dynamics for the nodes of an SIR notwork satisfy.

$$
\begin{aligned}
& {[\dot{\delta}]=-\beta[\delta I]} \\
& {[\dot{I}]=\beta[\delta I]-\alpha[I]} \\
& {[\dot{R}]=\alpha[I] .}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \begin{aligned}
&-[S](t+\Delta t)=\sum_{i=1}^{n} P\left(I_{i}(t+\Delta t)=0\right) \\
&=\sum_{i=1}^{n} P\left(I_{i}(t+\Delta t)=0 \mid I_{i}(t)=0\right) P\left(I_{i}(t)=0\right) \\
&=\sum_{r=1}^{n}\left(1-\beta \Delta t \sum_{i=1}^{n} A_{i j} I_{i}(t)\right) P\left(I_{i}(t)=0\right) \\
& \Rightarrow \frac{[S](t+\Delta t)-[S](t)}{\Delta t}=-\sum_{r=1}^{n} \sum_{i=1}^{n} A_{i} ; I_{i}(t) P\left(I_{i}(t)=0\right)
\end{aligned}
\end{aligned}
$$

Takin $\Delta t \rightarrow 0$ we obtain:

$$
[\dot{S}]=-\beta[S I]
$$

$-[I](t+1 t)=\sum_{i=1}^{n} P\left(\Gamma_{i}(t+\Delta t)=1\right)$

$$
\begin{aligned}
&=\sum_{i=1}^{n}\left[P\left(I_{i}(t+4 t)=11 I_{i}(t)=0\right) P\left(I_{i}(t)=\varnothing\right)\right. \\
&+P\left(I_{i}(t+4 t)=11 I_{i}(t)=1\right) P\left(I_{i}(t)=1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow[I](t+A t)=\sum_{i=1}^{n} \beta \Delta t \sum_{i=1}^{n} A_{i j} I_{j}(t) P\left(I_{i}(t)=0\right) \\
& +\sum_{1 \rightarrow 1}^{n}(1-\alpha \Delta t) P\left(I_{i}-(t)=1\right) \\
& \Rightarrow \frac{[I](t+4 t)-[I] \mid t)}{\Delta t}=\sum_{i=1}^{n} \sum_{h=1}^{n} \beta A_{i j} F_{i}(t) P(I ;(t)=0) \\
& -\alpha \sum_{i=1}^{n} P\left(I_{i}(t)=1\right) \text {. }
\end{aligned}
$$

Taking $\Delta t \rightarrow 0$ we obtain:

$$
\begin{aligned}
& {[I]=+\beta[S I] \sim \alpha[I] .} \\
& \begin{aligned}
&-[R](t+\Delta t)=\sum_{i=1}^{n} P\left(I_{i}(t+\Delta t)=2\right) \\
&=\sum_{i=1}^{n}\left[P\left(I_{i}(t+\Delta t)=21 I_{i}(t)=1\right) P\left(I_{i}(t)=1\right)\right. \\
&\left.\left.=\sum_{i=1}^{n}+P \Delta t P\left(I_{i}(t+\Delta t)=2 \mid I_{i}(t)=2\right) P(t)=1\right)+P\left(I_{i}(t)=2\right)\right] \\
& \Rightarrow \frac{[R T(t+\Delta t)-[R](t)}{\Delta t}=\alpha \sum_{i=1}^{n} P\left(I_{i}(t)=1\right)
\end{aligned}
\end{aligned}
$$

Taking the limit as $\Delta t \rightarrow 0$ we obtain:

$$
[\dot{R}]=\alpha[I] .
$$

\#3.
Analyze the dynamics. of the SIS model with edge dynamics:

$$
\begin{aligned}
& {[\dot{S}]=-\beta[S I]+\alpha[I]} \\
& {[I]=\beta[S I]-\alpha[I]} \\
& {[\dot{S S}]=-2 \beta[S S I]+2 \alpha[S I]} \\
& {[S I]=\beta([S S I]-[I S I]-[S I])+\alpha([I I]-[S I])} \\
& {[I I]=2 \beta([I S I 1+[I S])-2 \alpha[I I]}
\end{aligned}
$$

Solution:
$(a-b)$ By consmuction $n=[5]+[I]$ and $[S S]+2[S I]+[T \Gamma]=n\langle k\rangle$ are conserved quantities and thus [I] and [III can be eliminated yielding:

$$
\begin{aligned}
& {[\dot{S}]=-\beta[S I]+\alpha(n-[S])} \\
& {[S S]=-2 \beta[S S I]+2 \alpha[S I]} \\
& {[S I]=\beta([S S I]-[I S I]-[S I])+\alpha(n\langle K \lambda-3[S I]-[S S]) .}
\end{aligned}
$$

If we further asseme that:

$$
[S I]=\langle k\rangle[S]-[S S]
$$

and apply the standard moment closure we have that:

$$
\begin{aligned}
& {[\dot{S}] }=-\beta[S I]+\alpha(n-[S]) \\
& {[\dot{S} S] }=-2 \beta(\langle k\rangle-1) \frac{[S S] \cdot[S I]}{\langle S]}+2 \alpha[S I] \\
& \Rightarrow[\dot{S}]=-\beta(\langle k\rangle[S]-[S S])+\alpha(n-[S]) \\
& {[S S] }=-2 \beta(\langle k\rangle-1)[S S](\langle k\rangle[S]-[S S])+2 \alpha(\langle k\rangle[S]-[S S]) \\
&\langle k\rangle \quad[S]
\end{aligned}
$$

If we make the change of variables

$$
x=\frac{[s]}{n}, y=\frac{[S S]}{n\langle k\rangle}
$$

It follows that

$$
\begin{aligned}
n \alpha \frac{d x}{d \tau} & =-\beta\langle k \geqslant n(x-y)+\alpha n(1-x) \\
n \alpha\langle k\rangle \frac{d y}{d \tau} & =-2 \beta \frac{(\langle k\rangle-1) n^{2}\langle k\rangle^{2} y y(x-y)}{n\langle k\rangle x}+2 \alpha n\langle k\rangle(x-y) \\
\Rightarrow \frac{d x}{d \tau} & =-\frac{\beta\langle k\rangle}{\alpha}(x-y)+(1-x) \\
\frac{d y}{d \tau} & =\frac{-2 \beta}{\alpha}\left(\langle k z-1) y \frac{(x-y)}{x}+2(x-y)\right.
\end{aligned}
$$

Letting $R_{0}=\beta\langle k\rangle / \alpha$ and $\gamma=(\langle k\rangle-1) /\langle k\rangle$. We obtain the system:

$$
\begin{aligned}
& \frac{d x}{d \tau}=-R_{0}(x-y)+(1-x) \\
& \frac{d y}{d \tau}=-2 R_{0} \gamma y \frac{(x-y)}{x}+2(x-y)
\end{aligned}
$$

Note, in a $5 / 5 \mathrm{stm}$ in which n is large and everybody is crancestad wa obtain

$$
R_{0} \approx \beta n / \alpha \text { and } \gamma \approx 1
$$

as expected.
We now calculate the nullaliaes:
in'

$$
\begin{aligned}
\frac{d x}{d \tau} & \Rightarrow
\end{aligned} \Rightarrow R_{0} y=\left(R_{0}+1\right) x-1 ~=y=\left(1+1 / R_{0}\right) x-1 / R_{0}
$$

NZ:

$$
\begin{array}{rlrl}
\frac{d y}{d r} & =0 & \Rightarrow y=x \text { and } 1-\operatorname{Ro} \gamma \frac{y}{x} \\
& \Rightarrow y=x \text { and } y & y=\frac{1}{R_{0} \gamma} x .
\end{array}
$$

To determine fixed points we have:

$$
\begin{aligned}
-y & =x \text { and } y=\left(1+1 / R_{0}\right) x-1 / R_{0} \\
& \Rightarrow x=1 \text { and } y=1 \\
-y & =\frac{1}{R \gamma} x \text { and } y=\left(1+1 / R_{0}\right) x-1 / R_{0} \\
& \Rightarrow \frac{1}{R_{0} \gamma} x=\left(1+1 / R_{0}\right) x-1 / R_{0} \\
& \Rightarrow x=\left(R_{0} \gamma+\gamma\right) x-\gamma \\
& \Rightarrow x=\frac{\gamma}{\gamma\left(1+R_{0}\right)-1} . \text { and } y=\frac{1}{R_{0}\left(\gamma\left(1+R_{0}\right)-1\right)}
\end{aligned}
$$

Thus, the second fixed point will exist if

$$
\gamma\left(1+R_{0}\right)>1 .
$$

The Jacobian for this system is give by:

$$
\left.\left.\left.\begin{array}{rl}
& J(x, y)
\end{array}\right)\left[\begin{array}{ll}
-R_{0}-1 & R_{0} \\
2\left(1-\gamma R_{0} y /(x)+2(x-y)\left(\gamma R_{0} y / x_{2}^{2}\right)\right. & 4 \gamma R_{0} y / x-2 \gamma R_{0}-2
\end{array}\right]\right] \text { (} \quad \begin{array}{ll}
-R_{0}-1 & \\
2\left(1-\gamma R_{0}\right) & 2\left(\gamma R_{1}-1\right)
\end{array}\right] \quad .
$$

Therefore, $(1,1)$ will be stable if:

$$
\begin{aligned}
&-R_{0}-1+2\left(\gamma R_{0}-1\right)<0 \text { and } 2\left(R_{0}+1\right)\left(1-\gamma R_{0}\right)-2 R_{0}\left(1-\gamma R_{1}\right) x \\
& \Rightarrow R_{0}(2 \gamma-1)-3<0 \text { and } \quad 2\left(1-\gamma-R_{0}\right)>0 \\
& \Rightarrow R_{0}(2 \gamma-1)-3<0 \text { and } \quad \gamma R_{0}<1
\end{aligned}
$$

Now, if $\gamma R_{0}>1$ it follows that

$$
R_{0}(2 x-1)-3>2-3-R_{0}=-1-R_{0}<0
$$

Consequently the condition for stability of the disease free equillibrion is

Case $1: R, \gamma<1$

(Endrmic Equillbrion)

Case $2: R_{0} \gamma>1$
\#4
Derive a model for the wades and edges in an SIR model. Solution:
We first draw a diagram to illustrate the flows between nodes and edges

15 To build the model for the edges I I ${ }^{1}$ [SE] am going to look at the inflows and
\square I out flows of each compurtmont and then $\frac{J}{\alpha}[I]$ try to arrange them into a network!

\#5
In this problem we derive and analyze an SIS model with paused connections.

Solution:
If we assume paused connections are introduced at a rate proportional to infections wC have the fallowing diagram

$$
\begin{aligned}
\Rightarrow[\dot{S}] & =-\beta[S I]+\alpha[I] \\
{[\dot{I}] } & =\beta[S I]-\alpha[I] \\
{[\dot{S S}] } & =-2 \beta[S S I]+2 \alpha[S I]-\gamma[I][S S] \\
{[S I] } & =\beta[S S I]-\beta[I S I]-\beta[S I]+\alpha[I I]-\gamma[I][S I] \\
{[\dot{I}] } & =2 \beta[S S I]+2 \beta[S I]-2 \alpha[I I]-\gamma[I][I I] \\
\cdot & \\
{[\dot{S S}] } & =\gamma[I][S S]+2 \alpha[5 I] \\
{[S I] } & =\gamma[I][S I]+\alpha[I I]-\alpha[S I] \\
{[I I] } & =\gamma[I][I I]-2 \alpha[I I]
\end{aligned}
$$

$\left(\begin{array}{l}\text { This is a bonus problem as I made a) } \\ \text { mistake }\end{array}\right.$

This motivates the construction of the following diagram

This yields the equations

$$
\begin{aligned}
& {[\dot{S}]=-\beta[S I]} \\
& {[\dot{I}]=\beta[S I]-\alpha[I]} \\
& {[\dot{R}]=\alpha[I]} \\
& {[\dot{S} S]=-2 \beta[S S I]} \\
& {[S I]=-\beta[S I]-\beta[I S I]-\alpha[S I]} \\
& {[\dot{I}]=2 \beta[S I]+2 \beta[I S I]-2 \alpha[I I]} \\
& {[S R]=\alpha[S I]-\beta[I S R]} \\
& {[I R]=\beta[I S R]+\alpha[I I]-\alpha[I R]} \\
& {[R R]=2 \alpha[I R]}
\end{aligned}
$$

