MST 383/683

Homework \#2

Due Date: September 09, 2021

1. pg. 31, \#2.8
2. The curves $x(t)$ illustrated below correspond to solution curves for the differential equation $\dot{x}=f(x)$.

Figure 1:
(a) Sketch a one dimensional phase portrait that is consistent with Fig. 1
(b) Sketch a graph of $f(x)$ that is consistent with Fig. 1 .
(c) Give a formula for $f(x)$ that is consistent with Fig. 1 ,
3. Consider the following $S I S$ model with constant population size N :

$$
\begin{aligned}
\dot{S} & =-\frac{\beta I^{p} S}{1+(\sigma I)^{q}}+\alpha I \\
\dot{I} & =\frac{\beta I^{p} S}{1+(\sigma I)^{q}}-\alpha I
\end{aligned}
$$

(a) Determine the dimensions of the positive constants σ, β and α.
(b) Reduce the SIS model to a single differential equation.
(c) Introducing an appropriate dimensionless population x and dimensionless time τ, convert the single differential equation into dimensionless form.
(d) For the case $p<1, q=p-1$, determine the threshold condition for the existence of endemic equilibria.
(e) For the case $p>1, p=q$, determine the threshold condition for the existence of endemic equilibria.
(f) Why does this model not make sense if $p>1$ and $p>q$?.
4. In cases of constant recruitment, the limiting system as $t \rightarrow \infty$ and the original system usually have the same qualitative dynamics. Consider the following SIV model with constant recruitment and vaccination:

$$
\begin{aligned}
\dot{S} & =\Lambda-\beta S \frac{I}{N}-\mu S \\
\dot{I} & =\beta S \frac{I}{N}-(\mu+\gamma) I \\
\dot{V} & =\gamma I-\mu V
\end{aligned}
$$

where again $N(t)=S(t)+I(t)+V(t)$ and all of the parameters are positive constants.
(a) What are the units of Λ, β, μ and γ ?
(b) Interpret in practical terms what the constants Λ, β, μ, and γ represent physically.
(c) Find an equation for $\dot{N}(t)$ and solve this equation for $N(t)$.
(d) Show that $\lim _{t \rightarrow \infty} N(t)=\Lambda / \mu$.
(e) Explain why part (d) allows us to consider the following equivalent system:

$$
\begin{aligned}
\dot{S} & =\mu N-\beta S I-\mu S \\
\dot{I} & =\beta S I-(\mu+\gamma) I \\
\dot{V} & =\gamma I-\mu V .
\end{aligned}
$$

(f) Reduce the second system of two equations to a system of two differential equations for the infected and susceptible populations that is independent of V.
5. A disease is introduced by two visitors into a town with 1200 inhabitants. An average infective is in contact with 0.4 inhabitants per day. The average duration of the infective period is 6 days, and recovered infectives are immune against reinfection. Assuming an $S I R$ model, estimate how many inhabitants would have to be immunized to avoid an epidemic.

