
MST 383/683

Homework #4

Due Date: October 15 2021

1. Consider an SIS network model with adjacency matrix A and where each node has a status
Xi(t) ∈ {0, 1} denoting whether node i is susceptible or infected at time t. Suppose further
that the transition probabilities for the status of each node are given by:

P (Xi(t+ ∆t) = 1|Xi(t) = 0) = β∆t

n∑
j=1

AijXj(t)

P (Xi(t+ ∆t) = 0|Xi(t) = 0) = 1− β∆t

n∑
j=1

AijXj(t)

P (Xi(t+ ∆t) = 0|Xi(t) = 1) = α∆t

P (Xi(t+ ∆t) = 1|Xi(t) = 1) = 1− α∆t

(a) Prove that [SS](t) + [SI](t) = 〈kS(t)〉[S](t) and [SI] + [II] = 〈kI(t)〉[I](t), where 〈kS(t)〉
and 〈kI(t)〉 denote the average degree of the susceptible and infected nodes.

(b) Prove that [SSI] + [ISI] = (〈kS(t)〉 − 1) [SI].

2. Consider an SIR network model with adjacency matrix A and where each node has a status
Xi(t) ∈ {0, 1, 2} denoting whether node i is susceptible, infected, or recovered at time t.
Suppose further that the transition probabilities for the status of each node are given by:

P (Xi(t+ ∆t) = 0|Xi(t) = 0) = 1− β∆t

n∑
j=1

AijXj(t)

P (Xi(t+ ∆t) = 1|Xi(t) = 0) = β∆t

n∑
j=1

AijXj(t)

P (Xi(t+ ∆t) = 2|Xi(t) = 0) = 0

P (Xi(t+ ∆t) = 0|Xi(t) = 1) = 0

P (Xi(t+ ∆t) = 1|Xi(t) = 1) = 1− α∆t

P (Xi(t+ ∆t) = 2|Xi(t) = 1) = α∆t

P (Xi(t+ ∆t) = 0|Xi(t) = 2) = 0

P (Xi(t+ ∆t) = 1|Xi(t) = 2) = 0

P (Xi(t+ ∆t) = 2|Xi(t) = 2) = 1

Following the derivation we did for the SIS network model, show that

˙[S] = −β[SI],

˙[I] = β[SI]− α[I],

˙[R] = α[I].

Note, you just need to reproduce what we did in class in detail.
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3. The differential equations for the dynamics of the nodes and edges for the SIS model are
given by

˙[S] = −β[SI] + α[I]

˙[I] = β[SI]− α[I]

˙[SS] = −2β[SSI] + 2α[SI]

˙[SI] = β([SSI]− [ISI]− [SI]) + α ([II]− [SI])

˙[II] = 2β([ISI] + [IS])− 2α[II]

(a) Using the following approximation:

[ABC] ≈ 〈k〉 − 1

〈k〉
[AB][BC]

[B]
,

derive a closed system of equations for the dynamics of the nodes and edges.

(b) Show that [S] + [I] and [SS] + 2[SI] + [II] are conserved quantities and thus

n = [S](0) + [I](0),

n〈k〉 = [SS](0) + 2[SI](0) + [II](0)

are constant in time.

(c) Using the result of part (b), reduce the system of equations derived in part (a) to a
system of three differential equations for [S], [SS], and [SI].

(d) Assuming further that [SI] = 〈k〉[S] − [SS], reduce this system further to a system of
two differential equations.

(e) For the system of differential equations you have derived, determine the fixed points,
analyze their stability, and sketch phase portraits that illustrate all of the qualitatively
different cases that occur.

(f) Calculate a dimensionless parameterR0 such that ifR0 > 1 the disease becomes endemic.

4. For the SIR model defined in problem #2, derive differential equations for the edges:

[SS], [SI], [SR], [II], [IR], [RR].

5. In this problem you will derive differential equations for an SIS model in which edges can be
paused. Specifically, individuals will pause connections at a rate proportional to the total num-
ber of infections. This could model a disease in which infected individuals are asymptomatic
but as more infections are reported individuals remove themselves from the network.

(a) For the SIS model given in problem #3, introduce a new class of edges [SS], [IS], and
[II] which denote paused connections. Develop a system of eight differential equations
for the dynamics of [S], [I], [SS], [SI], [II], [SS], [SI] and [II] in which paused connections
are introduced at rate proportional to the number of infections. Note, your equations
should be conservative in the sense that in addition to [S] + [I], [SS] + 2[SI] + [II] +
[SS] + 2[SI] + [II] is a conserved quantity.

(b) Using the same moment closure approximation defined in problem #3(a), close this
system of equations.

(c) Using the conserved quantities reduce this system of equations to a set of six differential
equations.

(d) Calculate a dimensionless parameterR0 such that ifR0 > 1 the disease becomes endemic.
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