MST 383/683

Homework \#7

Due Date: Never

1. Consider the following optimization problem:

$$
\min _{u} \int_{1}^{2}\left(t u(t)^{2}+t^{2} x(t)^{2}\right) d t
$$

subject to: $\dot{x}=-u(t)$ and $x(1)=1$.
(a) From first principles, derive the necessary conditions for a minimizer.
(b) Using the Hamiltonian, derive the necessary conditions for a minimizer.
(c) Solve the necessary conditions to determine a (candidate) minimizer for this problem.
2. Consider the following optimization problem:

$$
\min _{u} \int_{0}^{1}\left(x(t)^{2}+x(t)+u(t)^{2}+u(t)\right) d t
$$

subject to: $\dot{x}=u(t)$ and $x(0)=0$.
(a) From first principles, derive the necessary conditions for a minimizer.
(b) Using the Hamiltonian, derive the necessary conditions for a minimizer.
(c) Solve the necessary conditions to determine a (candidate) minimizer for this problem.
3. Consider the following optimization problem:

$$
\begin{gathered}
\min _{u} \frac{1}{2} \int_{0}^{1}\left[(x(t)-t-1)^{2}+u(t)^{2}\right] d t \\
\quad \text { subject to: } \dot{x}=u(t) \text { and } x(0)=1
\end{gathered}
$$

(a) From first principles, derive the necessary conditions for a minimizer.
(b) Using the Hamiltonian, derive the necessary conditions for a minimizer.
(c) Solve the necessary conditions to determine a (candidate) minimizer for this problem.

