MTH 351/651
 Homework \#6

Due Date: October 12, 2022

1 Problems for Everyone

1. Consider the linear system

$$
\begin{aligned}
& \dot{x}=x-y, \\
& \dot{y}=x+y .
\end{aligned}
$$

(a) Show that the system has eigenvalues $\lambda_{1}=1+i$ and $\lambda_{2}=1-i$ with eigenvectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
i \\
1
\end{array}\right] \text { and } \mathbf{v}_{2}=\left[\begin{array}{c}
-i \\
1
\end{array}\right] .
$$

(b) Express the generic solution

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

as a sum of two real-valued functions. Hint: First, express $c_{1}=a_{1}+i b_{1}$ and $c_{2}=a_{2}+i b_{2}$, where $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$. Second, use the fact that for $\omega \in \mathbb{R}, e^{i \omega}=\cos (\omega)+i \sin (\omega)$ to rewrite the solution $\mathbf{x}(t)$ in terms of sines and cosines and then separate the terms that have a prefactor of i from those that do not. Third, find conditions on $a_{1}, a_{2}, b_{1}, b_{2}$ that ensure the terms involving i vanish.
2. For the following systems, find the nullclines and the fixed points and plot a plausible phase portrait for the system. You do not have to analyze the stability of the fixed points.
(a) $\dot{x}=x-x^{3}$ and $\dot{y}=-y$.
(b) $\dot{x}=y$ and $\dot{y}=x(1+y)-1$.
(c) $\dot{x}=\sin (y)$ and $\dot{y}=x-x^{3}$.
(d) $\dot{x}=x y-1$ and $\dot{y}=x-y^{3}$.

