MTH 351/651
 Homework \#8

Due Date: December 02, 2022

1 Problems for Everyone

1. Prove that the system $\dot{x}=x-y-x^{3}, \dot{y}=x+y-y^{3}$ has a periodic solution.
2. Show that the system $\dot{x}=-x-y+x\left(x^{2}+2 y^{2}\right), \dot{y}=x-y+y\left(x^{2}+2 y^{2}\right)$ has at least one periodic solution.
3. Discuss the bifurcations of the system

$$
\begin{aligned}
& \dot{r}=r(\mu-\sin (r)) \\
& \dot{\theta}=2 \mu-\sin (\theta)
\end{aligned}
$$

as μ varies. Here, r and θ represent the standard polar coordinates.
4. Consider the following modified version of the predator prey system:

$$
\begin{aligned}
\dot{x} & =x(x(1-x)-y), \\
\dot{y} & =y(x-a),
\end{aligned}
$$

where $a \geq 0$.
(a) Sketch the nullclines in the first quadrant $x, y \geq 0$
(b) Show that the fixed points are $(0,0),(1,0)$, and $\left(a, a-a^{2}\right)$, and classify them.
(c) Show that a Hopf bifurcation occurs at $a_{c}=1 / 2$. Is it subcritical or supercritical?
(d) Sketch all the topologically different phase portraits for $0<a<1$ and interpret them in practical terms.
5. Consider the following dynamical system on the torus:

$$
\begin{aligned}
& \dot{\theta}_{1}=\omega_{1}+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right), \\
& \dot{\theta}_{2}=\omega_{2}+\sin \left(\theta_{2}\right) \cos \left(\theta_{1}\right),
\end{aligned}
$$

where $\omega_{1}, \omega_{2} \geq 0$.
(a) Sketch all of the qualitatively different phase portraits that arise as ω_{1}, ω_{2} vary.
(b) Find the curves in ω_{1}, ω_{2} parameter space along which bifurcations occur, and classify the various bifurcations.
(c) Plot the stability diagram in ω_{1}, ω_{2} parameter space.

