MTH 351/651
 Quiz \#1

1. Consider the following ordinary differential equation

$$
\dot{x}=a\left(x-x^{3}\right),
$$

where $a>0$ is a constant.
(a) Find all of the fixed points.
(b) Sketch the phase portrait and classify the stability of the fixed points.
(c) Sketch the graph of solutions $x(t)$ for different initial conditions. Be sure to include curves to illustrate all qualitatively different possibilities.
(d) Calculate \ddot{x} as a function of x.
(a) $x=0, \pm 1$
(b) $\lim _{x \rightarrow \infty} a\left(x-x^{3}\right)=-\infty$

(d) $\ddot{x}=\frac{d}{d t} \dot{x}=\frac{d}{d x} \dot{a}\left(x-x^{3}\right) \dot{x}=a^{2}\left(1-3 x^{2}\right)\left(x-x^{3}\right)$.

