MTH 381
 Homework \#8

Due Date: December 02, 2022

1 Theory Problems

1. Prove that $f \sim g$ if and only if $f=g$ pointwise-a.e. defines an equivalence relation on the space of all measurable functions.
2. Let $I \subset \mathbb{R}$ be an open interval, and $f: \mathbb{R} \times I \mapsto[-\infty, \infty]$ be a Lebesgue measurable function such that
(a) $f(\cdot, t) \in L^{1}(\mathbb{R})$ for each $t \in I$.
(b) $f(x, \cdot)$ is differentiable in I for each $x \in \mathbb{R}$.
(c) there is a function $g \in L^{1}(\mathbb{R})$ such that

$$
\left|\frac{\partial f}{\partial t}(x, t)\right| \leq|g(x)|
$$

Use the dominated convergence theorem to prove that

$$
\varphi(t)=\int_{\mathbb{R}} f(x, t) d \mu
$$

is a differentiable function of t in I and

$$
\frac{d \varphi}{d t}=\int_{\mathbb{R}} \frac{\partial f}{\partial t}(x, t), d \mu
$$

2 Applied Problems

1. Give an example of a sequence of simple functions ϕ_{n} on $[0,1]$ for which

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \phi_{n}(x)=0
$$

while

$$
\lim _{n \rightarrow \infty} \phi_{n}(x)
$$

exists for no $x \in[0,1]$. Hint: You might not be able to find an explicit formula but you can draw pictures.
2. For $f \in L^{1}(\mathbb{R})$ find

$$
\lim _{A \rightarrow \infty} \int_{-\infty}^{\infty} \frac{f(x)}{A^{2}+x^{2}} d x
$$

3. The convolution of two real value functions f and $g \in^{L^{1}}(\mathbb{R})$ is defined by

$$
(f \star g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Prove that
(a) $\|f \star g\|_{L^{1}} \leq\|g\|_{L^{1}}\|f\|_{L^{1}}$.
(b) $\|f \star g\|_{L^{\infty}} \leq\|g\|_{L^{1}}\|f\|_{L^{\infty}}$.
4. Consider the function

$$
E(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} /(4 t)}
$$

(a) Using the fact that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, show that for all $t>0$,

$$
\int_{-\infty}^{\infty} E(t, x) d x=1
$$

(b) Show that $E(t, x)$ solves the following partial differential equation

$$
\frac{\partial E}{\partial t}=\frac{\partial^{2} E}{\partial x^{2}}
$$

(c) Show that for $f \in C^{1}(\mathbb{R})$:

$$
\lim _{t \rightarrow 0}(E \star f)(t, x)=f(x) .
$$

(d) Show that $u(x, t)=(E \star f)(t, x)$ satisfies the following partial differential equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the initial condition $u(0, x)=f(x)$. Hint: Don't worry about differentiating under the integral sign.
5. Let f be a non-negative measurable function. Prove that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \frac{f^{n}(x)}{1+f^{n}(x)} d \mu(x)=\mu(E)+\frac{1}{2} \mu(F)
$$

where $E=\{x \in X: f(x)>1\}, F=\{x \in X: f(x)=1\}$ and μ is the Lebesgue measure.

