MTH 317/617: Homework \#1

Due Date: September 08, 2023

1 Problems for Everyone

1. If $z=1+2 i, w=2-i$ and $\zeta=4+3 i$, write the following complex expressions in the form $a+b i$ where a and b are real numbers.
(a) $z+3 w$,
(b) $-2 w+\bar{\zeta}$,
(c) z^{2},
(d) $w^{3}+w$,
(e) $\operatorname{Im}\left(\zeta^{-1}\right)$,
(f) w / z,
(g) $\zeta^{2}+2 \bar{\zeta}+3$.
2. Solve the following equations for z. Express your answer in the form $z=a+b i$ where a and b are real numbers.
(a) $z=1-z i$,
(b) $\frac{z}{1+z}=1+2 i$,
(c) $(\pi+i) z-8 z^{2}=0$,
(d) $z^{2}+i=0$.
3. Describe the set of points $z \in \mathbb{C}$ that satisfy each of the following.
(a) $|z-1+1|=3$,
(b) $|z-1|=|z+1|$,
(c) $|z|=\operatorname{Re}(z)+2$,
(d) $2<|z|<6$,
(e) $\operatorname{Re}(z /(1+i))=0$.
4. Let $z \in \mathbb{C}$ and assume $z \neq 0$. Prove the following:
(a) $|\operatorname{Re}(z)| \leq|z|$ and $|\operatorname{Im}(z)| \leq|z|$,
(b) $\operatorname{Re}(z)=(z+\bar{z}) / 2$ and $\operatorname{Im}(z)=-i(z-\bar{z}) / 2$,
(c) If k is an integer then $(\bar{z})^{k}=\overline{\left(z^{k}\right)}$,
(d) $|z|=1$ if and only if $1 / z=\bar{z}$.
(e) If $|z|=1$ and $z \neq 1$, then $\operatorname{Re}\left((1-z)^{-1}\right)=1 / 2$.
5. Find the argument of the following complex numbers and write each in the polar form $z=$ $r(\cos (\theta)+i \sin (\theta))$.
(a) $-1+i$,
(b) $1+i \sqrt{3}$,
(c) $-i$,
(d) $(2-i)^{2}$,
(e) $|4+3 i|$,
(f) $\sqrt{2} /(1+i)$,
(g) $[(1+i) / \sqrt{2}]^{4}$,
6. Write the given complex number in the form $a+b i$, where $a, b \in \mathbb{R}$.
(a) $e^{-i \frac{\pi}{2}}$,
(b) $\frac{e^{1+3 \pi i}}{e^{-1+\frac{\pi i}{2}}}$,
(c) $\frac{e^{3 i}-e^{-3 i}}{2 i}$,
(d) $e^{e^{i}}$.

2 Graduate Problems

1. In this exercise you will prove the Cauchy-Schwarz inequality for complex numbers.
(a) Let B, C be nonnegative real numbers and suppose that

$$
0 \leq B-2 \operatorname{Re}(\bar{\lambda} A)+|\lambda|^{2} C
$$

for all $\lambda \in \mathbb{C}$. Prove that $|A|^{2} \leq B C$.
(b) Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be complex numbers. Prove the following inequality:

$$
\begin{equation*}
\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right|^{2} \leq \sum_{j=1}^{n}\left|a_{j}\right|^{2} \sum_{i=1}^{n}\left|b_{j}\right|^{2} \tag{1}
\end{equation*}
$$

Hint: For all $\lambda \in \mathbb{C}$, we have $0 \leq \sum_{j=1}^{n}\left|a_{j}-\lambda b_{j}\right|^{2}$.
(c) When does equality hold in (1)?
(d) Use (1) to prove that

$$
\left(\sum_{j=1}^{n}\left|a_{j}+b_{j}\right|^{2}\right)^{1 / 2} \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2}+\left(\sum_{j=1}^{n}\left|b_{j}\right|^{2}\right)^{1 / 2}
$$

2. Let $z=x+i y$ where $x, y \in \mathbb{R}$. Prove that $|z| \leq|x|+|y|$.
