MTH 317/617: Homework #1

Due Date: September 08, 2023

1 Problems for Everyone

- 1. If z = 1 + 2i, w = 2 i and $\zeta = 4 + 3i$, write the following complex expressions in the form a + bi where a and b are real numbers.
 - (a) z + 3w,
 - (b) $-2w + \bar{\zeta}$,
 - (c) z^2 ,
 - (d) $w^3 + w$,
 - (e) $Im(\zeta^{-1}),$
 - (f) w/z,
 - (g) $\zeta^2 + 2\bar{\zeta} + 3$.
- 2. Solve the following equations for z. Express your answer in the form z = a + bi where a and b are real numbers.
 - (a) z = 1 zi, (b) $\frac{z}{1+z} = 1 + 2i$, (c) $(\pi + i)z - 8z^2 = 0$,
 - (d) $z^2 + i = 0.$
- 3. Describe the set of points $z \in \mathbb{C}$ that satisfy each of the following.
 - (a) |z 1 + 1| = 3,
 - (b) |z-1| = |z+1|,
 - (c) $|z| = \operatorname{Re}(z) + 2$,
 - (d) 2 < |z| < 6,
 - (e) $\operatorname{Re}(z/(1+i)) = 0.$
- 4. Let $z \in \mathbb{C}$ and assume $z \neq 0$. Prove the following:
 - (a) $|\operatorname{Re}(z)| \le |z|$ and $|\operatorname{Im}(z)| \le |z|$,
 - (b) $\operatorname{Re}(z) = (z + \overline{z})/2$ and $\operatorname{Im}(z) = -i(z \overline{z})/2$,
 - (c) If k is an integer then $(\overline{z})^k = \overline{(z^k)}$,
 - (d) |z| = 1 if and only if $1/z = \overline{z}$.
 - (e) If |z| = 1 and $z \neq 1$, then Re $((1-z)^{-1}) = 1/2$.

- 5. Find the argument of the following complex numbers and write each in the polar form $z = r(\cos(\theta) + i\sin(\theta))$.
 - (a) -1+i,
 - (b) $1 + i\sqrt{3}$,
 - (c) -i,
 - (d) $(2-i)^2$,
 - (e) |4+3i|,
 - (f) $\sqrt{2}/(1+i)$,
 - (g) $[(1+i)/\sqrt{2}]^4$,

6. Write the given complex number in the form a + bi, where $a, b \in \mathbb{R}$.

(a)
$$e^{-i\frac{\pi}{2}}$$
,
(b) $\frac{e^{1+3\pi i}}{e^{-1+\frac{\pi i}{2}}}$,
(c) $\frac{e^{3i}-e^{-3i}}{2i}$,
(d) $e^{e^{i}}$.

2 Graduate Problems

- 1. In this exercise you will prove the Cauchy-Schwarz inequality for complex numbers.
 - (a) Let B, C be nonnegative real numbers and suppose that

$$0 \le B - 2\operatorname{Re}(\bar{\lambda}A) + |\lambda|^2 C$$

for all $\lambda \in \mathbb{C}$. Prove that $|A|^2 \leq BC$.

(b) Let a_1, \ldots, a_n and b_1, \ldots, b_n be complex numbers. Prove the following inequality:

$$\left|\sum_{j=1}^{n} a_j \bar{b_j}\right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{i=1}^{n} |b_j|^2.$$
(1)

Hint: For all $\lambda \in \mathbb{C}$, we have $0 \leq \sum_{j=1}^{n} |a_j - \lambda b_j|^2$.

- (c) When does equality hold in (1)?
- (d) Use (1) to prove that

$$\left(\sum_{j=1}^{n} |a_j + b_j|^2\right)^{1/2} \le \left(\sum_{j=1}^{n} |a_j|^2\right)^{1/2} + \left(\sum_{j=1}^{n} |b_j|^2\right)^{1/2}$$

2. Let z = x + iy where $x, y \in \mathbb{R}$. Prove that $|z| \le |x| + |y|$.