MTH 317/617
 Homework \#3

Due Date: September 22, 2023

1 Problems for Everyone

1. Write each of the following functions in the form $w=u(x, y)+i v(x, y)$ and for each function find the domain of definition.
(a) $f(z)=3 z^{2}+5 z+i+1$
(b) $f(z)=1 / z$
(c) $f(z)=\frac{z+i}{z^{2}+1}$
(d) $f(z)=e^{3 z}$
(e) $f(z)=\frac{2 z^{2}+3}{|z-3|}$
(f) $f(z)=e^{z}+e^{-z}$
2. For the complex function $f(z)=e^{z}$:
(a) Describe the domain of definition and the range.
(b) Show that $f(-z)=-1 / f(z)$.
(c) Describe the image of the vertical line $\operatorname{Re}(z)=1$.
(d) Describe the image of the horizontal $\operatorname{line} \operatorname{Im}(z)=\pi / 4$.
(e) Describe the image of the infinite strip $0 \leq \operatorname{Im}(z) \leq \pi / 4$.
3. Let $F(z)=z+i, G(z)=i z$, and $H(z)=2 z$. Sketch the image of the semi-circle:

$$
S=\{z \in \mathbb{C}:|z|=1, \operatorname{Im}(z)>0 \text { and } \operatorname{Re}(z)>0\}
$$

under the following mappings:
(a) $F(z)$
(b) $G(z)$
(c) $H(z)$
(d) $G(F(z))$
(e) $G(H(z))$
(f) $H(F(z))$
(g) $F(G(H(z)))$
4. Prove the sequence of complex numbers $z_{n}=x_{n}+i y_{n}$ converges to $z_{0}=x_{0}+i y_{0}$ if and only if x_{n} converges to x_{0} and y_{n} converges to y_{0}.
5. Prove that the sequence of complex numbers $z_{n} \rightarrow z_{0}$ if and only if $\overline{z_{n}} \rightarrow \overline{z_{0}}$.
6. Prove that $z_{n} \rightarrow 0$ if and only if $\left|z_{n}\right| \rightarrow 0$.
7. Compute the following limits justifying all steps or prove that the limit does not exist.
(a) $\lim _{z \rightarrow 0} \frac{\operatorname{Im}(z)}{z}$.
(b) $\lim _{z \rightarrow 0} z e^{i \operatorname{Re}(z)}$.
(c) $\lim _{z \rightarrow 0} e^{\frac{1}{z}}$.
(d) $\lim _{z \rightarrow i} \frac{1}{z-i}-\frac{1}{z^{2}+1}$.

