MTH 317/617
 Homework \#4

Due Date: October 6, 2023

1 Problems for Everyone

1. Show that each of the following functions is nowhere differentiable using the definition of the derivative, i.e. do not use the Cauchy Riemann equations.
(a) $f(z)=\operatorname{Re}(z)$
(b) $f(z)=\operatorname{Im}(z)$
2. Let $P(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)$. Prove that

$$
\frac{P^{\prime}(z)}{P(z)}=\frac{1}{z-z_{1}}+\ldots+\frac{1}{z-z_{n}}
$$

3. Find real constants a, b, c, d so that the given function is analytic
(a) $f(z)=3 x-y+5+i(a x+b y-3)$.
(b) $f(z)=x^{2}+a x y+b y^{2}+i\left(c x^{2}+d x y+y^{2}\right)$.
4. Prove that if $f(z)=u(x, y)+i v(x, y)$ is analytic then

$$
\left|f^{\prime}(z)\right|^{2}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}=\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}
$$

5. Verify that each given function u is harmonic (in the region where it is defined) and then find the function v such that $f(z)=u(x, y)+i v(x, y)$ is analytic.
(a) $u=e^{x} \sin (y)$
(b) $u=x y-x+y$
(c) $u=\sin (x) \cosh (y)$
(d) $u=\operatorname{Im}\left(\exp \left(z^{2}\right)\right)$

2 Graduate Problems

1. A set A is said to be an ordered set provided it contains a subset P with the following two properties

- For any $x \in A$, either $x \in P$ or $-x \in P$ (but not both).
- If $x, y \in P$ then both $x y \in P$ and $x+y \in P$.

In \mathbb{R} the set P is the set of positive numbers. In \mathbb{R} we say $x>y$, if and only if $x-y \in P$. Prove that \mathbb{C} is not an ordered set.

